3. ApplicationMember States and international organizations should vol terjemahan - 3. ApplicationMember States and international organizations should vol Bahasa Indonesia Bagaimana mengatakan

3. ApplicationMember States and int

3. Application
Member States and international organizations should voluntarily take
measures, through national mechanisms or through their own applicable
mechanisms, to ensure that these guidelines are implemented, to the greatest extent
feasible, through space debris mitigation practices and procedures.
These guidelines are applicable to mission planning and the operation of
newly designed spacecraft and orbital stages and, if possible, to existing ones. They
are not legally binding under international law.
It is also recognized that exceptions to the implementation of individual
guidelines or elements thereof may be justified, for example, by the provisions of
the United Nations treaties and principles on outer space.
4. Space debris mitigation guidelines
The following guidelines should be considered for the mission planning,
design, manufacture and operational (launch, mission and disposal) phases of
spacecraft and launch vehicle orbital stages:
Guideline 1: Limit debris released during normal operations
Space systems should be designed not to release debris during normal
operations. If this is not feasible, the effect of any release of debris on the outer
space environment should be minimized.
During the early decades of the space age, launch vehicle and spacecraft
designers permitted the intentional release of numerous mission-related objects into
Earth orbit, including, among other things, sensor covers, separation mechanisms
and deployment articles. Dedicated design efforts, prompted by the recognition of
the threat posed by such objects, have proved effective in reducing this source of
space debris.
Guideline 2: Minimize the potential for break-ups during operational phases
Spacecraft and launch vehicle orbital stages should be designed to avoid
failure modes which may lead to accidental break-ups. In cases where a condition
leading to such a failure is detected, disposal and passivation measures should be
planned and executed to avoid break-ups.
Historically, some break-ups have been caused by space system malfunctions,
such as catastrophic failures of propulsion and power systems. By incorporating
potential break-up scenarios in failure mode analysis, the probability of these
catastrophic events can be reduced.
Guideline 3: Limit the probability of accidental collision in orbit
In developing the design and mission profile of spacecraft and launch vehicle
stages, the probability of accidental collision with known objects during the
system’s launch phase and orbital lifetime should be estimated and limited. If
73
available orbital data indicate a potential collision, adjustment of the launch time or
an on-orbit avoidance manoeuvre should be considered.
Some accidental collisions have already been identified. Numerous studies
indicate that, as the number and mass of space debris increase, the primary source of
new space debris is likely to be from collisions. Collision avoidance procedures
have already been adopted by some Member States and international organizations.
Guideline 4: Avoid intentional destruction and other harmful activities
Recognizing that an increased risk of collision could pose a threat to space
operations, the intentional destruction of any on-orbit spacecraft and launch vehicle
orbital stages or other harmful activities that generate long-lived debris should be
avoided.
When intentional break-ups are necessary, they should be conducted at
sufficiently low altitudes to limit the orbital lifetime of resulting fragments.
Guideline 5: Minimize potential for post-mission break-ups resulting from stored
energy
In order to limit the risk to other spacecraft and launch vehicle orbital stages
from accidental break-ups, all on-board sources of stored energy should be depleted
or made safe when they are no longer required for mission operations or post
mission disposal.
By far the largest percentage of the catalogued space debris population
originated from the fragmentation of spacecraft and launch vehicle orbital stages.
The majority of those break-ups were unintentional, many arising from the
abandonment of spacecraft and launch vehicle orbital stages with significant
amounts of stored energy. The most effective mitigation measures have been the
passivation of spacecraft and launch vehicle orbital stages at the end of their
mission. Passivation requires the removal of all forms of stored energy, including
residual propellants and compressed fluids and the discharge of electrical storage
devices.
Guideline 6: Limit the long-term presence of spacecraft and launch vehicle orbital
stages in the low-Earth orbit (LEO) region after the end of their mission
Spacecraft and launch vehicle orbital stages that have terminated their
operational phases in orbits that pass through the LEO region should be removed
from orbit in a controlled fashion. If this is not possible, they should be disposed of
in orbits that avoid their long-term presence in the LEO region.
When making determinations regarding potential solutions for removing
objects from LEO, due consideration should be given to ensuring that debris that
survives to reach the surface of the Earth does not pose an undue risk to people or
property, including through environmental pollution caused by hazardous
substances.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
3. Application
Member States and international organizations should voluntarily take
measures, through national mechanisms or through their own applicable
mechanisms, to ensure that these guidelines are implemented, to the greatest extent
feasible, through space debris mitigation practices and procedures.
These guidelines are applicable to mission planning and the operation of
newly designed spacecraft and orbital stages and, if possible, to existing ones. They
are not legally binding under international law.
It is also recognized that exceptions to the implementation of individual
guidelines or elements thereof may be justified, for example, by the provisions of
the United Nations treaties and principles on outer space.
4. Space debris mitigation guidelines
The following guidelines should be considered for the mission planning,
design, manufacture and operational (launch, mission and disposal) phases of
spacecraft and launch vehicle orbital stages:
Guideline 1: Limit debris released during normal operations
Space systems should be designed not to release debris during normal
operations. If this is not feasible, the effect of any release of debris on the outer
space environment should be minimized.
During the early decades of the space age, launch vehicle and spacecraft
designers permitted the intentional release of numerous mission-related objects into
Earth orbit, including, among other things, sensor covers, separation mechanisms
and deployment articles. Dedicated design efforts, prompted by the recognition of
the threat posed by such objects, have proved effective in reducing this source of
space debris.
Guideline 2: Minimize the potential for break-ups during operational phases
Spacecraft and launch vehicle orbital stages should be designed to avoid
failure modes which may lead to accidental break-ups. In cases where a condition
leading to such a failure is detected, disposal and passivation measures should be
planned and executed to avoid break-ups.
Historically, some break-ups have been caused by space system malfunctions,
such as catastrophic failures of propulsion and power systems. By incorporating
potential break-up scenarios in failure mode analysis, the probability of these
catastrophic events can be reduced.
Guideline 3: Limit the probability of accidental collision in orbit
In developing the design and mission profile of spacecraft and launch vehicle
stages, the probability of accidental collision with known objects during the
system’s launch phase and orbital lifetime should be estimated and limited. If
73
available orbital data indicate a potential collision, adjustment of the launch time or
an on-orbit avoidance manoeuvre should be considered.
Some accidental collisions have already been identified. Numerous studies
indicate that, as the number and mass of space debris increase, the primary source of
new space debris is likely to be from collisions. Collision avoidance procedures
have already been adopted by some Member States and international organizations.
Guideline 4: Avoid intentional destruction and other harmful activities
Recognizing that an increased risk of collision could pose a threat to space
operations, the intentional destruction of any on-orbit spacecraft and launch vehicle
orbital stages or other harmful activities that generate long-lived debris should be
avoided.
When intentional break-ups are necessary, they should be conducted at
sufficiently low altitudes to limit the orbital lifetime of resulting fragments.
Guideline 5: Minimize potential for post-mission break-ups resulting from stored
energy
In order to limit the risk to other spacecraft and launch vehicle orbital stages
from accidental break-ups, all on-board sources of stored energy should be depleted
or made safe when they are no longer required for mission operations or post
mission disposal.
By far the largest percentage of the catalogued space debris population
originated from the fragmentation of spacecraft and launch vehicle orbital stages.
The majority of those break-ups were unintentional, many arising from the
abandonment of spacecraft and launch vehicle orbital stages with significant
amounts of stored energy. The most effective mitigation measures have been the
passivation of spacecraft and launch vehicle orbital stages at the end of their
mission. Passivation requires the removal of all forms of stored energy, including
residual propellants and compressed fluids and the discharge of electrical storage
devices.
Guideline 6: Limit the long-term presence of spacecraft and launch vehicle orbital
stages in the low-Earth orbit (LEO) region after the end of their mission
Spacecraft and launch vehicle orbital stages that have terminated their
operational phases in orbits that pass through the LEO region should be removed
from orbit in a controlled fashion. If this is not possible, they should be disposed of
in orbits that avoid their long-term presence in the LEO region.
When making determinations regarding potential solutions for removing
objects from LEO, due consideration should be given to ensuring that debris that
survives to reach the surface of the Earth does not pose an undue risk to people or
property, including through environmental pollution caused by hazardous
substances.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
3. Aplikasi
negara anggota dan organisasi internasional harus secara sukarela mengambil
langkah-langkah, melalui mekanisme nasional atau melalui mereka sendiri yang berlaku
mekanisme, untuk memastikan bahwa pedoman ini diterapkan, secara lebih luas
layak, melalui praktek mitigasi puing-puing ruang dan prosedur.
Pedoman ini berlaku untuk perencanaan misi dan operasi
pesawat ruang angkasa baru yang dirancang dan tahap orbital dan, jika mungkin, untuk yang sudah ada. Mereka
tidak mengikat secara hukum di bawah hukum internasional.
Hal ini juga diakui bahwa pengecualian terhadap pelaksanaan individu
pedoman atau elemen daripadanya dapat dibenarkan, misalnya, dengan ketentuan
perjanjian PBB dan prinsip-prinsip luar angkasa.
4. Pedoman mitigasi puing-puing ruang
Pedoman berikut harus dipertimbangkan untuk perencanaan misi,
desain, manufaktur dan operasional (peluncuran, misi dan pembuangan) tahap
tahap orbital pesawat ruang angkasa dan peluncuran kendaraan:
Pedoman 1: Batas puing-puing dirilis selama operasi normal
sistem ruang harus dirancang tidak untuk melepaskan puing-puing selama biasa
operasi. Jika hal ini tidak layak, dan pengaruh dari setiap rilis puing-puing di luar
lingkungan ruang harus diminimalkan.
Selama dekade awal abad ruang angkasa, kendaraan peluncuran dan pesawat ruang angkasa
desainer diizinkan rilis disengaja berbagai objek misi yang berhubungan ke
orbit Bumi, termasuk, antara lain, meliputi sensor, mekanisme pemisahan
dan artikel penyebaran. Upaya desain khusus, didorong oleh pengakuan
ancaman yang ditimbulkan oleh benda-benda tersebut, telah terbukti efektif dalam mengurangi sumber ini
puing-puing ruang.
Pedoman 2: Meminimalkan potensi break-up selama fase operasional
Spacecraft dan kendaraan peluncuran tahap orbital harus dirancang untuk menghindari
modus kegagalan yang dapat menyebabkan kecelakaan break-up. Dalam kasus di mana kondisi
yang menyebabkan kegagalan tersebut terdeteksi, langkah-langkah pembuangan dan pasif harus
direncanakan dan dilaksanakan untuk menghindari break-up.
Secara historis, beberapa break-up disebabkan oleh malfungsi sistem ruang,
seperti bencana kegagalan penggerak dan kekuasaan sistem. Dengan menggabungkan
potensi skenario break-up dalam analisis modus kegagalan, kemungkinan ini
peristiwa bencana dapat dikurangi.
Pedoman 3: Batasi kemungkinan tabrakan disengaja dalam orbit
Dalam mengembangkan profil desain dan misi pesawat ruang angkasa dan kendaraan peluncuran
tahap, kemungkinan tabrakan disengaja dengan benda-benda yang dikenal selama
fase peluncuran sistem dan orbital seumur hidup harus diperkirakan dan terbatas. Jika
73
data orbit yang tersedia mengindikasikan potensi benturan, penyesuaian waktu peluncuran atau
suatu penghindaran manuver on-orbit harus dipertimbangkan.
Beberapa tabrakan kecelakaan telah diidentifikasi. Sejumlah penelitian
menunjukkan bahwa, karena jumlah dan massa peningkatan puing-puing ruang, sumber utama
puing-puing ruang baru mungkin dari tabrakan. Prosedur menghindari tabrakan
telah diadopsi oleh beberapa negara anggota dan organisasi-organisasi internasional.
Pedoman 4: Hindari kerusakan yang disengaja dan kegiatan berbahaya lainnya
Menyadari bahwa peningkatan risiko tabrakan bisa menimbulkan ancaman bagi ruang
operasi, penghancuran disengaja dari setiap pesawat ruang angkasa di orbit dan kendaraan peluncuran
tahap orbital atau kegiatan berbahaya lainnya yang menghasilkan puing-puing berumur panjang harus
. dihindari
Ketika sengaja break-up yang diperlukan, mereka harus dilakukan pada
ketinggian yang cukup rendah untuk membatasi masa orbital yang dihasilkan fragmen.
Pedoman 5: Minimalkan potensi untuk posting -mission break-up yang dihasilkan dari disimpan
energi
Untuk membatasi risiko terhadap pesawat ruang angkasa dan peluncuran kendaraan tahapan orbital lainnya
dari kecelakaan break-up, semua sumber on-board energi yang tersimpan harus habis
atau dibuat aman ketika mereka tidak lagi diperlukan untuk operasi misi atau pasca
pembuangan misi.
Sejauh persentase terbesar dari populasi puing-puing ruang katalog
berasal dari fragmentasi tahap orbital pesawat ruang angkasa dan peluncuran kendaraan.
Mayoritas dari mereka break-up yang tidak disengaja, banyak timbul dari
ditinggalkannya pesawat ruang angkasa dan peluncuran kendaraan tahap orbital dengan signifikan
jumlah energi yang tersimpan. Langkah-langkah mitigasi yang paling efektif telah menjadi
pasif tahap orbital pesawat ruang angkasa dan kendaraan peluncuran pada akhir mereka
misi. Pasivasi memerlukan penghapusan segala bentuk energi yang tersimpan, termasuk
propelan sisa dan cairan dikompresi dan pembuangan penyimpanan listrik
perangkat.
Pedoman 6: Batasi kehadiran jangka panjang orbital pesawat ruang angkasa dan kendaraan peluncuran
tahapan dalam orbit rendah Bumi (LEO) daerah setelah akhir misi mereka
Spacecraft dan kendaraan peluncuran tahap orbital yang telah dihentikan mereka
tahap operasional dalam orbit yang melewati wilayah LEO harus dihapus
dari orbit dengan cara yang terkontrol. Jika hal ini tidak mungkin, mereka harus dibuang
dalam orbit yang menghindari kehadiran jangka panjang mereka di wilayah LEO.
Ketika membuat penentuan tentang solusi potensial untuk menghapus
objek dari LEO, pertimbangan harus diberikan untuk memastikan bahwa puing-puing yang
bertahan untuk mencapai permukaan bumi tidak menimbulkan risiko yang tidak semestinya kepada orang-orang atau
properti, termasuk melalui pencemaran lingkungan yang disebabkan oleh berbahaya
zat.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: