0.5µmol L−1. Below the thermocline the water is cooler and more nutrie terjemahan - 0.5µmol L−1. Below the thermocline the water is cooler and more nutrie Bahasa Indonesia Bagaimana mengatakan

0.5µmol L−1. Below the thermocline

0.5µmol L−1
. Below the thermocline the water is cooler and more nutrient-rich.
Average depth of the mixed layer can vary seasonally from 5 m to 30 m, causing
strong changes in temperature and nutrient concentration at a depth of, say,
12 m (Zimmerman and Kremer 1984). Superimposed on this seasonal pattern is
a twice-daily fluctuation in the position of the thermocline, caused by internal waves
that are tidally driven (Cairns and LaFond 1966). At a given depth, the diurnal
fluctuations in temperature and nutrients can be as great as the annual fluctuations. Beds of giant kelp straddle the average position of the thermocline, so
internal waves cause the incursion of nutrients into the kelp beds twice a day.
This input is crucial to the survival of the kelp beds in summer. During the
El Niño of 1982 – 4 (see Section 9.2.1), the 15 °C isotherm was depressed to a depth
of 50 m, effectively isolating the kelp beds from the input of nutrients associated
with the internal waves.
During the 1957–9 El Niño, a similar depression of the thermocline had caused
the kelp beds to be so starved of nutrients that kelp productivity was reduced
below the level needed to meet the grazing demands of sea urchins. In other words,
nutrient deprivation and sea urchin grazing interacted to cause widespread
destruction of kelp beds at that time. By the time of the 1982 – 4 El Niño, commercial harvesting had reduced sea urchin densities. In spite of deprivation of
nutrients, there was less damage to the kelp beds (Tegner and Dayton 1991).
7.4.4 Internal waves concentrate and transport
planktonic organisms
There have been two schools of thought about how internal waves might bring
about the shoreward transport of planktonic organisms. The first suggestion was
that organisms are caught in the slicks that form at the zones of convergence at
the surface, above the troughs of internal waves, and travel with the waves. The
second was that internal tidal bores, or breaking internal waves, are required before
organisms are carried shoreward.
(a) Concentration of organisms without transport
The water movement associated with internal waves, when they are close
enough to the surface, is as shown in Fig. 7.08. There are alternating zones of
upwelling with divergences and downwelling with convergences. Ewing (1950)
drew attention to the fact that convergences associated with internal waves may
be visible at the surface as smoother areas, or slicks, on a lightly rippled sea. He
pointed out that a surface film of organic matter is naturally present on biologically productive waters and that in the convergence zones this film becomes thicker
and is able to damp out small surface ripples. The internal waves are quite long,
so that slicks may be hundreds of meters apart, and they move slowly shoreward
(~0.2 m s
−1
) with the internal waves. There is a tendency for buoyant material such
as floating seaweed or amorphous organic matter to aggregate at the convergences,
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
0.5µmol L−1. Below the thermocline the water is cooler and more nutrient-rich.Average depth of the mixed layer can vary seasonally from 5 m to 30 m, causingstrong changes in temperature and nutrient concentration at a depth of, say, 12 m (Zimmerman and Kremer 1984). Superimposed on this seasonal pattern isa twice-daily fluctuation in the position of the thermocline, caused by internal wavesthat are tidally driven (Cairns and LaFond 1966). At a given depth, the diurnalfluctuations in temperature and nutrients can be as great as the annual fluctuations. Beds of giant kelp straddle the average position of the thermocline, so internal waves cause the incursion of nutrients into the kelp beds twice a day.This input is crucial to the survival of the kelp beds in summer. During the El Niño of 1982 – 4 (see Section 9.2.1), the 15 °C isotherm was depressed to a depthof 50 m, effectively isolating the kelp beds from the input of nutrients associatedwith the internal waves.During the 1957–9 El Niño, a similar depression of the thermocline had causedthe kelp beds to be so starved of nutrients that kelp productivity was reducedbelow the level needed to meet the grazing demands of sea urchins. In other words,nutrient deprivation and sea urchin grazing interacted to cause widespreaddestruction of kelp beds at that time. By the time of the 1982 – 4 El Niño, commercial harvesting had reduced sea urchin densities. In spite of deprivation ofnutrients, there was less damage to the kelp beds (Tegner and Dayton 1991).7.4.4 Internal waves concentrate and transport planktonic organismsThere have been two schools of thought about how internal waves might bringabout the shoreward transport of planktonic organisms. The first suggestion wasthat organisms are caught in the slicks that form at the zones of convergence atthe surface, above the troughs of internal waves, and travel with the waves. Thesecond was that internal tidal bores, or breaking internal waves, are required beforeorganisms are carried shoreward.(a) Concentration of organisms without transportThe water movement associated with internal waves, when they are closeenough to the surface, is as shown in Fig. 7.08. There are alternating zones ofupwelling with divergences and downwelling with convergences. Ewing (1950)drew attention to the fact that convergences associated with internal waves maybe visible at the surface as smoother areas, or slicks, on a lightly rippled sea. Hepointed out that a surface film of organic matter is naturally present on biologically productive waters and that in the convergence zones this film becomes thickerand is able to damp out small surface ripples. The internal waves are quite long,so that slicks may be hundreds of meters apart, and they move slowly shoreward(~0.2 m s−1) with the internal waves. There is a tendency for buoyant material suchas floating seaweed or amorphous organic matter to aggregate at the convergences,
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
0.5μmol L-1
. Di bawah termoklin air dingin dan lebih kaya gizi.
Rata-rata kedalaman lapisan campuran dapat bervariasi secara musiman dari 5 m sampai 30 m, menyebabkan
perubahan yang kuat dalam suhu dan konsentrasi nutrisi pada kedalaman, katakanlah,
12 m (Zimmerman dan Kremer 1984). Ditumpangkan pada pola musiman ini adalah
fluktuasi dua kali sehari di posisi termoklin, yang disebabkan oleh gelombang internal
yang pasang surut didorong (Cairns dan Lafond 1966). Pada kedalaman tertentu, diurnal
fluktuasi suhu dan nutrisi dapat sebagai besar sebagai fluktuasi tahunan. Tempat tidur dari rumput laut raksasa mengangkang posisi rata-rata termoklin, sehingga
gelombang internal menyebabkan serangan nutrisi ke dalam tempat tidur rumput laut dua kali sehari.
Masukan ini sangat penting untuk kelangsungan hidup tempat tidur rumput laut di musim panas. Selama
El Niño dari 1982-4 (lihat Bagian 9.2.1), 15 ° C isoterm tertekan dengan kedalaman
50 m, secara efektif mengisolasi tempat tidur rumput laut dari masukan nutrisi terkait
dengan gelombang internal.
Selama 1957 9 El Niño, depresi serupa termoklin telah menyebabkan
tempat tidur rumput laut yang akan jadi kekurangan nutrisi yang Kelp produktivitas berkurang
di bawah tingkat yang diperlukan untuk memenuhi tuntutan penggembalaan dari bulu babi. Dengan kata lain,
kekurangan gizi dan landak laut penggembalaan berinteraksi untuk menyebabkan luas
perusakan tempat tidur rumput laut pada waktu itu. Pada saat 1982-4 El Niño, pemanenan komersial telah mengurangi kepadatan landak laut. Meskipun perampasan
nutrisi, ada sedikit kerusakan tempat tidur rumput laut (Tegner dan Dayton 1991).
7.4.4 Gelombang internal berkonsentrasi dan mengangkut
organisme planktonik
Ada dua sekolah pemikiran tentang bagaimana gelombang internal mungkin membawa
tentang transportasi menuju ke pantai dari organisme planktonik. Saran pertama adalah
bahwa organisme terjebak dalam slicks yang terbentuk di zona konvergensi di
permukaan, di atas palung gelombang internal, dan perjalanan dengan gelombang. The
kedua adalah bahwa membosankan pasang surut internal atau melanggar gelombang internal, diperlukan sebelum
organisme dilakukan menuju ke pantai.
(A) Konsentrasi organisme tanpa mengangkut
Gerakan air yang terkait dengan gelombang internal, ketika mereka dekat
cukup untuk permukaan, seperti yang ditunjukkan di Ara. 7.08. Ada zona bergantian dari
upwelling dengan divergensi dan downwelling dengan konvergensi. Ewing (1950)
menarik perhatian pada fakta bahwa konvergensi terkait dengan gelombang internal mungkin
terlihat di permukaan sebagai daerah halus, atau slicks, di laut ringan berdesir. Dia
menunjukkan bahwa film permukaan bahan organik secara alami ada di perairan produktif secara biologis dan bahwa dalam zona konvergensi film ini menjadi lebih tebal
dan mampu meredam riak permukaan kecil. Gelombang internal yang cukup lama,
sehingga slicks mungkin ratusan meter, dan mereka bergerak perlahan menuju ke pantai
(~ 0,2 ms
-1
) dengan gelombang internal. Ada kecenderungan untuk bahan apung seperti
mengambang rumput laut atau bahan organik amorf untuk agregat di konvergensi,
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: