The main perceptions of the “mathematical induction” principle in the  terjemahan - The main perceptions of the “mathematical induction” principle in the  Bahasa Indonesia Bagaimana mengatakan

The main perceptions of the “mathem

The main perceptions of the “mathematical induction” principle in the professor’s mind as described in figure 1 are:
1. “Mathematical induction” is a jump to infinity;
2. “Mathematical induction” is one axiom of the five axioms of Peano;
3. “Mathematical induction” identifies the set of natural numbers.

The formulation of the mathematical induction principle is a fourth perception; our subject (the professor) used the formulation of MI principle in the set theory language.
For each perception of the MI principle, we determined a weight. The weight of each perception in each lesson was calculated as the ratio of all the statements (that were used/said by the professor during the lesson) to the total number of statements in the same lesson, figure 2. For example, in the first lesson the teacher emphasized the perception that depends on infinity more than identification of the natural numbers set, but he referred to the Peano’s axioms occasionally and did not refer to the formulation of the principle; this is described in figure 2(a). While during the fourth lesson the professor emphasized only the formulation of the MI principle, figure 2(d).
By analogy to the law of gravity in physics, it is clear that the heaviest weight is below and lightest is above, figure 2(a); we have to notice that the sum of all the ratios in figure 2(a) is less than 1, this difference is due to the statements which are not related to the content area. Similarly, figures 2(b), 2(c) and 2(d) describe the representation in the rest three lessons. Notice that the teacher emphasized the "infinity" perception of MI in the first two lessons, and it was negligible in the rest lessons; the "identification" perception was emphasized in the third lesson, the "formulation" perception approached 1 in the fourth lesson, and it was negligible in the first two lessons
Table 1 summarizes the total references of the teacher to each perception of the MI principle during the four lessons; in other words, table 1 provide the ratio between all the statements that refer to some perception and between all the statements that refer to content area during the four lessons.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
The main perceptions of the “mathematical induction” principle in the professor’s mind as described in figure 1 are: 1. “Mathematical induction” is a jump to infinity; 2. “Mathematical induction” is one axiom of the five axioms of Peano; 3. “Mathematical induction” identifies the set of natural numbers. The formulation of the mathematical induction principle is a fourth perception; our subject (the professor) used the formulation of MI principle in the set theory language. For each perception of the MI principle, we determined a weight. The weight of each perception in each lesson was calculated as the ratio of all the statements (that were used/said by the professor during the lesson) to the total number of statements in the same lesson, figure 2. For example, in the first lesson the teacher emphasized the perception that depends on infinity more than identification of the natural numbers set, but he referred to the Peano’s axioms occasionally and did not refer to the formulation of the principle; this is described in figure 2(a). While during the fourth lesson the professor emphasized only the formulation of the MI principle, figure 2(d). By analogy to the law of gravity in physics, it is clear that the heaviest weight is below and lightest is above, figure 2(a); we have to notice that the sum of all the ratios in figure 2(a) is less than 1, this difference is due to the statements which are not related to the content area. Similarly, figures 2(b), 2(c) and 2(d) describe the representation in the rest three lessons. Notice that the teacher emphasized the "infinity" perception of MI in the first two lessons, and it was negligible in the rest lessons; the "identification" perception was emphasized in the third lesson, the "formulation" perception approached 1 in the fourth lesson, and it was negligible in the first two lessonsTable 1 summarizes the total references of the teacher to each perception of the MI principle during the four lessons; in other words, table 1 provide the ratio between all the statements that refer to some perception and between all the statements that refer to content area during the four lessons.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Persepsi utama dari "induksi matematika" prinsip dalam pikiran profesor seperti yang dijelaskan pada gambar 1 adalah:
1. "Induksi matematika" adalah melompat hingga tak terbatas;
2. "Induksi matematika" adalah salah satu aksioma dari lima aksioma Peano;
3. "Induksi matematika" mengidentifikasi himpunan bilangan. Rumusan prinsip induksi matematika adalah persepsi keempat; subjek kita (profesor) digunakan rumusan prinsip MI dalam bahasa teori himpunan. Untuk setiap persepsi prinsip MI, kami menentukan berat. Bobot masing-masing persepsi di setiap pelajaran dihitung sebagai rasio semua pernyataan (yang digunakan / dikatakan oleh profesor selama pelajaran) dengan jumlah total dari pernyataan dalam pelajaran yang sama, angka 2. Misalnya, dalam pertama pelajaran guru menekankan persepsi yang tergantung pada infinity lebih dari identifikasi nomor set alam, tetapi ia disebut aksioma Peano yang sesekali dan tidak mengacu pada perumusan prinsip; ini dijelaskan pada gambar 2 (a). Sementara selama pelajaran keempat profesor menekankan hanya perumusan prinsip MI, angka 2 (d). Dengan analogi dengan hukum gravitasi dalam fisika, jelas bahwa berat terberat di bawah dan teringan di atas, angka 2 (a ); kita harus melihat bahwa jumlah semua rasio pada gambar 2 (a) kurang dari 1, perbedaan ini disebabkan oleh pernyataan yang tidak berhubungan dengan area konten. Demikian pula, angka 2 (b), 2 (c) dan 2 (d) menggambarkan representasi dalam sisa tiga pelajaran. Perhatikan bahwa guru menekankan "infinity" persepsi MI di dua pelajaran pertama, dan itu diabaikan dalam pelajaran sisa; yang "identifikasi" persepsi ditekankan dalam pelajaran ketiga, "formulasi" persepsi mendekati 1 dalam pelajaran keempat, dan itu diabaikan dalam dua pelajaran pertama Tabel 1 merangkum total referensi dari guru untuk setiap persepsi prinsip MI selama empat pelajaran; dengan kata lain, tabel 1 memberikan perbandingan antara semua pernyataan yang mengacu kepada beberapa persepsi dan antara semua pernyataan yang merujuk ke daerah konten selama empat pelajaran.





Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: