1.3 Current studyIn addition to addressing the construct validity of t terjemahan - 1.3 Current studyIn addition to addressing the construct validity of t Bahasa Indonesia Bagaimana mengatakan

1.3 Current studyIn addition to add

1.3 Current study
In addition to addressing the construct validity of the both the MTS and MS we also wanted to address the psychometric properties of the scales. In the current study, we extend the work done by Rim et al. (2011) by using EFA, CFA, and IRT to revise the scales on the basis of their dimensionality and item information parameters. We do this for three reasons. First, by reducing the number of items in both scales we are seeking to reduce the number of factors in both scales. Specifically, by removing items that contain little or no information from the MTS we predict that the scale will better fit a one-factor solution. Second, by removing items that contain little information the new revised scales will be a more parsimonious scale of the maximizing construct. Although, removing any item from a scale, even bad items, reduces the overall information of the scale, the goal of this analysis is to produce the most parsimonious scale. Third, reducing the number of items in both these scales has practical value because both these scales can be given in experiments easily, where the experimental data can help resolve differences between these scales. Finally, we preserved the original response scale structure of the MTS and MS in our study as 5- category and 7-category (respectively) response scales to maintain consistency with their original forms.
We will first subject both the MTS and MS to an (EFA) and a (CFA) to determine their dimensionality in our sample. We will then use item response theory (IRT) to examine the information that each item contributes to the maximizing construct. Low information items will be removed from each scale in an effort to improve the overall reliability and construct validity of the measures. Finally, we will examine the MTS and MS and their revised versions in comparison to constructs commonly found in the maximizing literature.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
1.3 Current studyIn addition to addressing the construct validity of the both the MTS and MS we also wanted to address the psychometric properties of the scales. In the current study, we extend the work done by Rim et al. (2011) by using EFA, CFA, and IRT to revise the scales on the basis of their dimensionality and item information parameters. We do this for three reasons. First, by reducing the number of items in both scales we are seeking to reduce the number of factors in both scales. Specifically, by removing items that contain little or no information from the MTS we predict that the scale will better fit a one-factor solution. Second, by removing items that contain little information the new revised scales will be a more parsimonious scale of the maximizing construct. Although, removing any item from a scale, even bad items, reduces the overall information of the scale, the goal of this analysis is to produce the most parsimonious scale. Third, reducing the number of items in both these scales has practical value because both these scales can be given in experiments easily, where the experimental data can help resolve differences between these scales. Finally, we preserved the original response scale structure of the MTS and MS in our study as 5- category and 7-category (respectively) response scales to maintain consistency with their original forms.We will first subject both the MTS and MS to an (EFA) and a (CFA) to determine their dimensionality in our sample. We will then use item response theory (IRT) to examine the information that each item contributes to the maximizing construct. Low information items will be removed from each scale in an effort to improve the overall reliability and construct validity of the measures. Finally, we will examine the MTS and MS and their revised versions in comparison to constructs commonly found in the maximizing literature.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
1,3 studi terkini
Selain mengatasi validitas konstruk dari kedua MTS dan MS kami juga ingin mengatasi sifat psikometrik timbangan. Dalam studi saat ini, kami memperluas kerja yang dilakukan oleh Lingkar dkk. (2011) dengan menggunakan EFA, CFA, dan IRT untuk merevisi skala atas dasar dimensi dan barang parameter informasi mereka. Kami melakukan ini karena tiga alasan. Pertama, dengan mengurangi jumlah item dalam kedua skala kita berusaha untuk mengurangi jumlah faktor di kedua skala. Secara khusus, dengan menghapus item yang mengandung sedikit atau tidak ada informasi dari MTS kami memprediksi bahwa skala akan lebih sesuai solusi satu-faktor. Kedua, dengan menghapus item yang berisi sedikit informasi timbangan direvisi baru akan menjadi skala yang lebih pelit dari konstruk memaksimalkan. Meskipun, menghapus item apapun dari skala, bahkan barang-barang yang buruk, mengurangi informasi keseluruhan skala, tujuan dari analisis ini adalah untuk menghasilkan skala yang paling pelit. Ketiga, mengurangi jumlah item dalam kedua skala ini memiliki nilai praktis karena kedua skala ini dapat diberikan dalam eksperimen dengan mudah, dimana data eksperimen dapat membantu menyelesaikan perbedaan antara skala ini. Akhirnya, kami diawetkan struktur skala respon asli dari MTS dan MS dalam penelitian kami sebagai 5- kategori dan 7-kategori (masing-masing) skala respon untuk menjaga konsistensi dengan bentuk aslinya.
Kami akan pertama subjek kedua MTS dan MS ke ( EFA) dan (CFA) untuk menentukan dimensi mereka dalam sampel kami. Kami kemudian akan menggunakan teori respon item (IRT) untuk memeriksa informasi yang setiap item kontribusi untuk membangun memaksimalkan. Item informasi yang rendah akan dihapus dari setiap skala dalam upaya untuk meningkatkan keandalan keseluruhan dan membangun validitas tindakan. Akhirnya, kita akan memeriksa MTS dan MS dan versi revisi mereka dibandingkan dengan konstruksi umum ditemukan dalam literatur memaksimalkan.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: