The simplest model we can fit to a set of data is the grand mean (the  terjemahan - The simplest model we can fit to a set of data is the grand mean (the  Bahasa Indonesia Bagaimana mengatakan

The simplest model we can fit to a

The simplest model we can fit to a set of data is the grand mean (the mean of the outcome
variable). This basic model represents ‘no effect’ or ‘no relationship between
the predictor variable and the outcome’.
MM We can fit a different model to the data collected that represents our hypotheses.
If this model fits the data well then it must be better than using the grand mean.
Sometimes we fit a linear model (the line of best fit) but in experimental research we
often fit a model based on the means of different conditions.
MM The intercept and one or more regression coefficients can describe the chosen model.
MM The regression coefficients determine the shape of the model that we have fitted;
therefore, the bigger the coefficients, the greater the deviation between the line and
the grand mean.
MM In correlational research, the regression coefficients represent the slope of the line,
but in experimental research they represent the differences between group means.
MM The bigger the differences between group means, the greater the difference between
the model and the grand mean.
MM If the differences between group means are large enough, then the resulting model
will be a better fit of the data than the grand mean.
MM If this is the case we can infer that our model (i.e. predicting scores from the group
means) is better than not using a model (i.e. predicting scores from the grand mean).
Put another way, our group means are significantly different.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Model yang paling sederhana kita dapat sesuai dengan satu set data adalah mean grand (mean hasilvariabel). Model dasar ini merupakan 'tidak ada efek' atau ' tidak ada hubungan antaravariabel peramal dan hasil '.MM kami dapat muat model yang berbeda untuk data yang dikumpulkan yang mewakili hipotesis kami.Jika model ini cocok data maka harus lebih baik daripada menggunakan grand mean.Kadang-kadang kita cocok model linear (baris paling cocok) tetapi di eksperimental penelitian kamisering cocok model berdasarkan sarana untuk kondisi yang berbeda.MM mencegat dan satu atau lebih regresi koefisien bisa menggambarkan model pilihan.MM koefisien regresi menentukan bentuk model yang kita telah dipasang;oleh karena itu, semakin besar koefisien, semakin besar penyimpangan antara garis dangrand mean.MM dalam penelitian correlational, Koefisien regresi mewakili lereng baris,Tapi dalam penelitian eksperimental mereka mewakili perbedaan antara kelompok berarti.MM yang lebih besar berarti perbedaan antara kelompok, semakin besar perbedaan antaramodel dan grand mean.MM jika perbedaan antara kelompok berarti cukup besar, maka model yang dihasilkanakan lebih baik sesuai data daripada grand mean.MM jika hal ini kita dapat menyimpulkan bahwa model kami (yaitu prediksi Skor dari grupberarti) lebih baik daripada tidak menggunakan model (yaitu prediksi Skor dari grand mean).Dengan kata lain, berarti kelompok kami secara signifikan berbeda.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: