Each such partition iP has ki clusters and inj is theN k iinumber of p terjemahan - Each such partition iP has ki clusters and inj is theN k iinumber of p Bahasa Indonesia Bagaimana mengatakan

Each such partition iP has ki clust

Each such partition i
P has ki clusters and i
nj is the
N k i
i
number of patterns in i . Cj , with "" n n =
j i = =
1 1
j
We are now interested in finding an optimal set of clusters
opt
P using the information available in the N different data partitions in P. Let us define K as the number of clusters in
P. opt
opt P should satisfy the following
1 .Consistency with the clustering ensemble P. 2.Consistency with ground truth information (true cluster labels)
The first property implies that the clusters in opt
P , the
final set of clusters, must not disagree or affect the accuracy of the clustering ensemble P. The second property is used as an additional validation to verify the accuracy of the clustering results.
III. THE RECURS IVE UNSUPERVISED LEARNING ALGORITHM
In this section we present the tools used in the development of the recursive unsupervised learning algorithm. As the recursive unsupervised learning algorithm is a hybrid approach, Genetic algorithm based global clustering techniques are given high importance and their development is given priority in this section.
A. Evolutionary Self Organizing Maps (eSOMs)
Evolutionary algorithms have been used to find global solutions in many applications, including neural network applications for supervised learning [14]. Inspired by this in [13], the authors apply genetic algorithms to clustering problems with good effect. The genetic algorithm applied is simple and retains the form of SOMs, but with evolutionary representation of the weights.
More simply, since the objective is to maximize, for each pattern x , the value, w(k)T x, a population of real coded
chromosomes encode (k)
w , for each cluster k. Each chromosome therefore consists of K*d elements, where K is the number of clusters and d is the dimension of the input data. The chromosomes are evaluated in batch mode, such as to maximize
K
w(k)T x
" "
k1 k x C =%
Crossover and mutation are performed and a new generation of chromosomes are produced. The process is continued until the system stagnates or until a maximum number of epochs is reached.
B. The Recursive Self Organizing algorithm
Recursive unsupervised learning uses a combination of self organizing maps and eSOMs to create clustering ensembles, illustrating the effectiveness of the recursive partitioning algorithm.











0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Masing-masing seperti partisi sayaP memiliki ki cluster dan sayaNJ adalahN k sayasayajumlah pola di saya. CJ, dengan "" n n =j saya ==1 1jKami sudah tertarik untuk menemukan seperangkat optimal clustermemilihP menggunakan informasi yang tersedia dalam N data yang berbeda partisi di P. Mari kita menetapkan K sebagai jumlah kluster diMemilih P.memilih P harus memenuhi berikut1. Konsistensi dengan clustering ansambel P. 2. konsistensi dengan tanah kebenaran informasi (benar cluster label)Properti pertama menyiratkan bahwa cluster dalam memilihP,akhir set cluster, harus tidak setuju atau mempengaruhi ketepatan ansambel clustering P. Properti kedua digunakan sebagai tambahan validasi untuk memverifikasi keakuratan dari hasil clustering.III. BERULANG IVE TANPA PENGAWASAN BELAJAR ALGORITMADalam bagian ini kami menyajikan alat-alat yang digunakan dalam pengembangan algoritma rekursif belajar tanpa pengawasan. Karena algoritma belajar tanpa pengawasan rekursif pendekatan hibrida, teknik clustering algoritma genetik yang berbasis global diberi penting tinggi dan perkembangan mereka diberikan prioritas dalam bagian ini.A. evolusi diri pengorganisasian Maps (eSOMs)Algoritma evolusi telah digunakan untuk menemukan solusi global dalam banyak aplikasi, termasuk aplikasi jaringan saraf untuk diawasi belajar [14]. Terinspirasi oleh ini di [13], penulis menerapkan algoritma genetik untuk pengelompokan masalah dengan efek yang bagus. Algoritma genetik diterapkan sederhana dan mempertahankan bentuk SOMs, tetapi dengan evolusi representasi dari berat.Lebih sederhana, karena tujuan adalah untuk memaksimalkan, untuk masing-masing pola x, nilai, w (k) T x, populasi nyata dikodekankromosom encode (k)w, untuk setiap cluster k. Kromosom masing-masing karena itu terdiri dari K * elemen d, dimana K adalah jumlah kluster dan d adalah dimensi dari input data. Kromosom dievaluasi dalam batch mode, seperti untuk memaksimalkanKw (k) T x" "K1 k x C = %Crossover dan mutasi dilakukan dan generasi baru kromosom diproduksi. Proses dilanjutkan hingga sistem yang mandeg atau jumlah maksimum zaman tercapai.B. The rekursif diri pengorganisasian algoritmaRekursif tanpa pengawasan belajar menggunakan kombinasi Self-Organizing peta dan eSOMs untuk membuat clustering ansambel, menggambarkan efektivitas rekursif partisi algoritma.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Setiap seperti partisi i
P memiliki ki cluster dan saya
nj adalah
N ki
i
jumlah pola di i. Cj, dengan "" nn =
ji = =
1 1
j
Kita sekarang tertarik untuk menemukan set optimal cluster
memilih
P menggunakan informasi yang tersedia di N partisi data yang berbeda di P. Mari kita mendefinisikan K sebagai jumlah cluster di
P . opt
opt P harus memenuhi berikut
1 .Consistency dengan pengelompokan ensemble P. 2.Consistency dengan informasi kebenaran tanah (label klaster benar)
Properti pertama menyiratkan bahwa cluster di opt
P,
set akhir cluster, tidak harus setuju atau mempengaruhi akurasi pengelompokan ensemble P. Properti kedua digunakan sebagai validasi tambahan untuk memverifikasi keakuratan hasil clustering.
III. Berulang IVE BELAJAR tanpa pengawasan ALGORITMA
Pada bagian ini kami menyajikan alat yang digunakan dalam pengembangan algoritma pembelajaran rekursif tanpa pengawasan. Sebagai algoritma pembelajaran rekursif tanpa pengawasan adalah pendekatan hybrid, algoritma genetika berdasarkan teknik pengelompokan global diberikan kepentingan tinggi dan perkembangan mereka diberikan prioritas dalam bagian ini.
A. Evolusi Self Organizing Maps (eSOMs)
algoritma evolusioner telah digunakan untuk menemukan solusi global dalam banyak aplikasi, termasuk aplikasi jaringan saraf untuk belajar diawasi [14]. Terinspirasi oleh ini di [13], penulis menerapkan algoritma genetika untuk mengelompokkan masalah dengan efek yang baik. Algoritma genetik diterapkan sederhana dan mempertahankan bentuk soms, tetapi dengan representasi evolusi dari bobot.
Lebih sederhana, karena tujuannya adalah untuk memaksimalkan, untuk setiap pola x, nilai, w (k) T x, populasi nyata kode
kromosom mengkodekan (k)
w, untuk setiap cluster k. Oleh karena itu setiap kromosom terdiri dari K * d elemen, di mana K adalah jumlah cluster dan d adalah dimensi data input. Kromosom dievaluasi dalam modus batch, seperti untuk memaksimalkan
K
w (k) T x
""
k1 kx C =%
Crossover dan mutasi dilakukan dan generasi baru kromosom yang dihasilkan. Proses dilanjutkan sampai sistem mandeg atau sampai jumlah maksimum zaman tercapai.
B. The Rekursif Self Organizing algoritma
Recursive belajar tanpa pengawasan menggunakan kombinasi peta diri mengatur dan eSOMs untuk membuat pengelompokan ansambel, menggambarkan efektivitas algoritma partisi rekursif.











Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: