Conservation of EnergyThere are many examples of situations where ener terjemahan - Conservation of EnergyThere are many examples of situations where ener Bahasa Indonesia Bagaimana mengatakan

Conservation of EnergyThere are man

Conservation of Energy
There are many examples of situations where energy is conserved. One such example is a rock falling from a given height. If the rock starts at rest, at the moment the rock is dropped, it only has potential energy. As it falls, its potential energy decreases as its height decreases, but its kinetic energy increases. The sum of potential energy and kinetic energy remains constant if friction is neglected. When the rock is about to hit the ground, all of its potential energy has been converted to kinetic energy. In this experiment, you will model a falling object and calculate its speed as it hits the ground.
Question
How does the transfer of an object’s potential energy to kinetic energy demonstrate conservation of energy?
Objectives
Calculate the speed of a falling object as it hits the ground by using a model.
Interpret data to find the relationship between potential energy and kinetic energy of a falling object.
Materials
grooved track (two sections)
electronic balance
marble or steel ball
metric ruler
stopwatch
graphing calculator
block of wood
procedure
1. Place the two sections of grooved track together, as shown in Figure 1. Raise one end of the track and place the block under it, about 5 cm from the raised end. Make sure the ball can roll smoothly across the junction of the two tracks.
2. Record the length of the level portion of the track in the data table. Place a ball on the track directly above the point supported by the block. Release the ball. Start the stopwatch when the ball reaches the level section of track. Stop timing when the ball reaches the end of the level portion of the track. Record the time required for the ball to travel that distance in the data table.
3. Move the support block so that it is under the midsection of the inclined track, as shown in Figure 2. Place the ball on the track just above the point supported by the block. Release the ball and measure the time needed for the ball to roll the length of the level portion of the track and record it in the data table. Notice that even though the incline is steeper, the ball is released from the same height as in step 2.
4. Calculate the speed of the ball on the level portion of the track in steps 2 and 3. Move the support block to a point about three-quarters down the length of the inclined track, as shown in Figure 3.
5. Predict the amount of time the ball will take to travel the length of the level portion of the track. Record your prediction. Test your prediction.
6. Place the support block at the midpoint of the inclined track (Figure 2). Measure a point on the inclined portion of the track that is 1.0 cm above the level portion of the track. Be sure to measure 1.0 cm above the level portion, and not 1.0 cm above the table.
7. Release the ball from this point and measure the time required for the ball to travel on the level portion of the track and record it in the data table.
8. Use a ruler to measure a point that is 2.0 cm above the level track. Release the ball from this point and measure the time required for the ball to travel on the level portion of the track. Record the time in the data table.
9. Repeat step 8 for 3.0 cm, 4.0 cm, 5.0 cm, 6.0 cm, 7.0 cm, and 8.0 cm. Record the times.
Analyze
1. Infer What effect did changing the slope of the inclined plane in steps 2–6 have on the speed of the ball on the level portion of the track?
2. Analyze Perform a power law regression for this graph using your graphing calculator. Record the equation of this function. Graph this by inputting the equation into Y=. Draw a sketch of the graph.
3. Using the data from step 9 for the release point of 8.0 cm, find the potential energy of the ball before it was released. Use an electronic balance to find the mass of the ball. Note that height must be in m, and mass in kg.
4. Using the speed data from step 9 for the release point of 8.0 cm calculate the kinetic energy of the ball on the level portion of the track. Remember, speed must be in m/s and mass in kg.
Conclude and apply
1. Solve for speed, y, in terms of height, x. Begin by setting PEi _ KEf.
2. How does the equation found in the previous question relate to the power law regression calculated earlier?
3. Suppose you want the ball to roll twice as fast on the level part of the track as it did when you released it from the 2-cm mark. Using the power law regression performed earlier, calculate the height from which you should release the ball.
4. Explain how this experiment only models dropping a ball and finding its kinetic energy just as it hits the ground.
5. Compare and Contrast Compare the potential energy of the ball before it is released (step 8) to the kinetic energy of the ball on the level track (step 9). Explain why they are the same or why they are different.
6. Draw Conclusions Does this experiment demonstrate conservation of energy? Explain.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Conservation of EnergyThere are many examples of situations where energy is conserved. One such example is a rock falling from a given height. If the rock starts at rest, at the moment the rock is dropped, it only has potential energy. As it falls, its potential energy decreases as its height decreases, but its kinetic energy increases. The sum of potential energy and kinetic energy remains constant if friction is neglected. When the rock is about to hit the ground, all of its potential energy has been converted to kinetic energy. In this experiment, you will model a falling object and calculate its speed as it hits the ground.QuestionHow does the transfer of an object’s potential energy to kinetic energy demonstrate conservation of energy?ObjectivesCalculate the speed of a falling object as it hits the ground by using a model.Interpret data to find the relationship between potential energy and kinetic energy of a falling object.Materialsgrooved track (two sections)electronic balancemarble or steel ballmetric rulerstopwatchgraphing calculatorblock of woodprocedure1. Place the two sections of grooved track together, as shown in Figure 1. Raise one end of the track and place the block under it, about 5 cm from the raised end. Make sure the ball can roll smoothly across the junction of the two tracks.2. Record the length of the level portion of the track in the data table. Place a ball on the track directly above the point supported by the block. Release the ball. Start the stopwatch when the ball reaches the level section of track. Stop timing when the ball reaches the end of the level portion of the track. Record the time required for the ball to travel that distance in the data table.3. Move the support block so that it is under the midsection of the inclined track, as shown in Figure 2. Place the ball on the track just above the point supported by the block. Release the ball and measure the time needed for the ball to roll the length of the level portion of the track and record it in the data table. Notice that even though the incline is steeper, the ball is released from the same height as in step 2.4. Calculate the speed of the ball on the level portion of the track in steps 2 and 3. Move the support block to a point about three-quarters down the length of the inclined track, as shown in Figure 3.5. Predict the amount of time the ball will take to travel the length of the level portion of the track. Record your prediction. Test your prediction.6. Place the support block at the midpoint of the inclined track (Figure 2). Measure a point on the inclined portion of the track that is 1.0 cm above the level portion of the track. Be sure to measure 1.0 cm above the level portion, and not 1.0 cm above the table.7. Release the ball from this point and measure the time required for the ball to travel on the level portion of the track and record it in the data table.8. Use a ruler to measure a point that is 2.0 cm above the level track. Release the ball from this point and measure the time required for the ball to travel on the level portion of the track. Record the time in the data table.9. Repeat step 8 for 3.0 cm, 4.0 cm, 5.0 cm, 6.0 cm, 7.0 cm, and 8.0 cm. Record the times.Analyze1. Infer What effect did changing the slope of the inclined plane in steps 2–6 have on the speed of the ball on the level portion of the track?2. Analyze Perform a power law regression for this graph using your graphing calculator. Record the equation of this function. Graph this by inputting the equation into Y=. Draw a sketch of the graph.3. Using the data from step 9 for the release point of 8.0 cm, find the potential energy of the ball before it was released. Use an electronic balance to find the mass of the ball. Note that height must be in m, and mass in kg.4. Using the speed data from step 9 for the release point of 8.0 cm calculate the kinetic energy of the ball on the level portion of the track. Remember, speed must be in m/s and mass in kg.Conclude and apply1. Solve for speed, y, in terms of height, x. Begin by setting PEi _ KEf.2. How does the equation found in the previous question relate to the power law regression calculated earlier?3. Suppose you want the ball to roll twice as fast on the level part of the track as it did when you released it from the 2-cm mark. Using the power law regression performed earlier, calculate the height from which you should release the ball.4. Explain how this experiment only models dropping a ball and finding its kinetic energy just as it hits the ground.5. Compare and Contrast Compare the potential energy of the ball before it is released (step 8) to the kinetic energy of the ball on the level track (step 9). Explain why they are the same or why they are different.6. Draw Conclusions Does this experiment demonstrate conservation of energy? Explain.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Konservasi Energi
Ada banyak contoh dari situasi di mana energi adalah kekal. Salah satu contohnya adalah batu yang jatuh dari ketinggian tertentu. Jika batu dimulai saat istirahat, saat ini batu dijatuhkan, hanya memiliki energi potensial. Karena jatuh, energi potensialnya menurun sebagai tinggi menurun, tapi meningkat energi kinetiknya. Jumlah energi potensial dan energi kinetik tetap konstan jika gesekan diabaikan. Ketika batu adalah untuk memukul tanah, semua energi potensialnya telah diubah menjadi energi kinetik. Dalam percobaan ini, Anda akan model benda jatuh dan menghitung kecepatan sebagai menyentuh tanah.
Pertanyaan
Bagaimana transfer energi potensial suatu benda untuk energi kinetik menunjukkan kekekalan energi?
Tujuan
Hitung kecepatan benda jatuh karena hits tanah dengan menggunakan model.
Menafsirkan data untuk menemukan hubungan antara energi potensial dan energi kinetik dari benda jatuh.
Bahan
berlekuk track (dua bagian)
keseimbangan elektronik
marmer atau bola baja
metrik penguasa
stopwatch
kalkulator grafik
balok kayu
prosedur
1. Tempatkan dua bagian dari jalur beralur bersama-sama, seperti yang ditunjukkan pada Gambar 1. Naikkan salah satu ujung trek dan menempatkan blok di bawahnya, sekitar 5 cm dari mengangkat akhir. Pastikan bola bisa bergulir lancar di persimpangan dua lagu.
2. Catat panjang dari bagian tingkat trek dalam tabel data. Tempatkan bola di jalur tepat di atas titik didukung oleh blok. Melepaskan bola. Mulai stopwatch saat bola mencapai bagian tingkat track. Menghentikan waktu ketika bola mencapai akhir dari bagian tingkat trek. Catat waktu yang dibutuhkan untuk bola untuk perjalanan jarak dalam tabel data.
3. Pindahkan dukungan blok sehingga berada di bawah bagian tengah dari jalur miring, seperti yang ditunjukkan pada Gambar 2. Tempatkan bola di jalur tepat di atas titik didukung oleh blok. Melepaskan bola dan mengukur waktu yang dibutuhkan untuk bola untuk roll panjang dari bagian tingkat trek dan merekamnya dalam tabel data. Perhatikan bahwa meskipun lereng curam, bola dilepaskan dari ketinggian yang sama seperti pada langkah 2.
4. Menghitung kecepatan bola pada bagian tingkat trek dalam langkah 2 dan 3. Pindahkan dukungan blok ke titik sekitar tiga perempat di sepanjang jalur miring, seperti yang ditunjukkan pada Gambar 3.
5. Memprediksi jumlah waktu bola akan melakukan perjalanan panjang dari bagian tingkat trek. Merekam prediksi Anda. Menguji prediksi Anda.
6. Tempatkan dukungan blok pada titik tengah dari jalur miring (Gambar 2). Mengukur titik pada bagian miring dari trek yang 1,0 cm di atas bagian tingkat trek. Pastikan untuk mengukur 1,0 cm di atas bagian tingkat, dan tidak 1,0 cm di atas meja.
7. Melepaskan bola dari titik ini dan mengukur waktu yang dibutuhkan untuk bola untuk perjalanan pada bagian tingkat trek dan merekamnya dalam tabel data.
8. Gunakan penggaris untuk mengukur titik yang adalah 2,0 cm di atas trek tingkat. Melepaskan bola dari titik ini dan mengukur waktu yang dibutuhkan untuk bola untuk perjalanan pada bagian tingkat trek. Mencatat waktu dalam tabel data.
9. Ulangi langkah 8 untuk 3,0 cm, 4,0 cm, 5,0 cm, 6,0 cm, 7,0 cm, dan 8,0 cm. Catat kali.
Menganalisis
1. Menyimpulkan Apa dampak perubahan kemiringan bidang miring dalam langkah 6/2 memiliki pada kecepatan bola pada bagian tingkat lintasan?
2. Menganalisis Lakukan regresi kuasa hukum untuk grafik ini menggunakan kalkulator grafik Anda. Catat persamaan fungsi ini. Grafik ini dengan memasukkan persamaan ke Y =. Menggambar sketsa grafik.
3. Menggunakan data dari langkah 9 untuk titik pelepasan 8,0 cm, menemukan energi potensial bola sebelum dirilis. Gunakan keseimbangan elektronik untuk menemukan massa bola. Perhatikan ketinggian itu harus dalam m, dan massa di kg.
4. Menggunakan data kecepatan dari langkah 9 untuk titik pelepasan 8,0 cm menghitung energi kinetik bola pada bagian tingkat trek. Ingat, kecepatan harus dalam m / s dan massa di kg.
Simpulkan dan menerapkan
1. Memecahkan untuk kecepatan, y, dalam hal tinggi badan, x. Mulailah dengan menetapkan PEI _ Kef.
2. Bagaimana persamaan ditemukan di pertanyaan sebelumnya berhubungan dengan regresi kuasa hukum dihitung sebelumnya?
3. Misalkan Anda ingin bola untuk roll dua kali lebih cepat pada tingkat bagian dari trek seperti ketika Anda dirilis dari tanda-2 cm. Menggunakan regresi kuasa hukum yang dilakukan sebelumnya, menghitung ketinggian dari mana Anda harus melepaskan bola.
4. Jelaskan bagaimana percobaan ini hanya model menjatuhkan bola dan menemukan energi kinetik yang sama seperti menyentuh tanah.
5. Bandingkan dan Kontras Bandingkan energi potensial bola sebelum dilepaskan (langkah 8) dengan energi kinetik bola di jalur tingkat (langkah 9). Menjelaskan mengapa mereka adalah sama atau mengapa mereka berbeda.
6. Menggambar Kesimpulan Apakah percobaan ini menunjukkan kekekalan energi? Menjelaskan.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: