experiment was aimed at determining the chemical speciestaking part in terjemahan - experiment was aimed at determining the chemical speciestaking part in Bahasa Indonesia Bagaimana mengatakan

experiment was aimed at determining

experiment was aimed at determining the chemical species
taking part in the electrochemical reactions. The mass change is
small at potentials more positive than 2.10 V, but it increases
significantly at more negative potentials owing to solvent
degradation. The slope in the mass change as a function of the
electroreduction charge is ca. 3.4 × 10−4g C−1 at 2.34 V, which
is an intermediate value between those expected for formation
of Li2O2 (2.4 × 10−4 g C−1) and LiO2 (4.0 × 10−4 g C−1). It
seems that agglomerates of Li2O2 and LiO2 were formed, as
predicted using density functional theory (DFT) calculations
and Raman spectroscopy.16,52,53 Differently from results in
aqueous medium, these EQCM data support a nondissociative
adsorption for oxygen molecules, as Li2O is formed during
dissociative adsorption and the ratio for mass change/charge
expected for Li2O (7.8 × 10−5 g C−1) was not observed.
Nondissociative adsorption for oxygen molecules has also been
supported by isotope labeling experiments.54
The chronoamperometric curves at 2.34, 2.10, and 1.90 V in
Figure 3 are evidence for ORR in oxygen-saturated 0.1 M
LiClO4/DME. The current density decreased fast in the
beginning, but the steady state was not reached even after a
long time because the reaction products partially blocked the
platinum surface, as mentioned above. These experiments
helped to determine the time that would be necessary to obtain
pseudosteady states, which is important when conducting
electrochemical impedance spectroscopy at dc potentials. These
data also provide important information about how the current
oscillates during the electrochemical reactions. These oscillations
correspond to ca. 5% of the total current density at 2.34
V, and increase to ca. 10% at 2.10 and 1.90 V. Since the kinetic
model above involves the steady state for ORR, the impedance
data had to be fitted at high frequencies (from 2 kHz to 3 Hz)
to minimize the effects of these oscillations, which last about
100 s. Moreover, the impedance data did not change after
several consecutive measurements in this frequency range.
DME, molecular oxygen, and platinum catalysts participate in
these current oscillations, because the latter do not occur
during chronoamperometric experiments performed with other
electrodes and with aerated or deaerated solvents (for instance,
propylene carbonate or glass carbon electrode). Studies about
these oscillations will be presented elsewhere.
Figure 4 shows the Nyquist and Bode diagrams (in the inset)
obtained in oxygen saturated electrolytic solution containing
0.1 M LiClO4/DME, as well as in oxygen-saturated 0.1 M
TBAClO4/DME, at (a) 2.34, (b) 2.10, and (c) 1.90 V. The
diagrams are superimposed with the ac potential perturbation
of 5 mV from 10 kHz to 10 mHz. With extrapolation of the
semicircle at 2.34 V, the charge transfer resistance (Rct) is
determined as 155 kΩ·cm2 in the presence of oxygen dissolved
in 0.1 M LiClO4/DME. Rct decreases as the dc potential
becomes less positive, and two semicircles emerge at 2.10 and
1.90 V. The semicircles at high and low frequencies are
probably associated with ORR and solvent degradation,
respectively. In the Bode diagrams, two distinct processes are
identified which display different time constants, at less positive
potentials. The Rct values associated with ORR are 20 and 7
kΩ·cm2 at 2.10 and 1.90 V, respectively.
Electrochemical impedance spectroscopy in oxygen-saturated
electrolytic solution consisting of 0.1 M TBAClO4/DME may
confirm ORR and DME degradation reactions in 0.1 M
LiClO4/DME, since tetrabutylammonium cations (TBA+) can
sustain ORR via one-electron transfer without any solvent
degradation26TBA+ ions are poorly solvated and tend to
form a stable TBA−O2 complex.39,55,56 According to the hard−
soft acid−base theory (HSAB), O2
− is a soft base with higher
affinity for TBA+ (poorly solvated soft acid) than for the Li+ ion
(hard acid).26 Note that a second semicircle (or second time
constant) does not appear in the Nyquist diagrams at 2.34,
2.10, or 1.90 V when 0.1 M TBAClO4/DME is the electrolytic
solution. Therefore, the second semicircle at low frequencies in
0.1 M LiClO4/DME at 2.10 and 1.90 V (Figures 4b and 4c)
refers to solvent degradation by O2
− or Li2O2.39,57
Solvent degradation reactions (not included in the reaction
mechanism) at 2.10 and 1.90 V modify coverage degrees of
reaction products and intermediates of ORR at the steady-state,
and this may compromise determination of the rate constants.
However, we opted to consider kinetic constants as estimated
at these dc potentials, because the inclusion of degradation
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
percobaan ini bertujuan menentukan spesies kimiamengambil bagian dalam reaksi elektrokimia. Perubahan massakecil dengan potensi yang lebih positif daripada 2.10 V, tetapi meningkatkansecara signifikan pada potensi yang lebih negatif karena pelarutdegradasi. Lereng di perubahan massa sebagai fungsielectroreduction charge adalah ca. 3,4 × 10−4g C−1 di 2,34 V, yangadalah nilai intermediate antara mereka yang diharapkan untuk pembentukandari Li2O2 (2.4 × 10-4 g C−1) dan LiO2 (4.0 × 10-4 g C−1). Itutampaknya bahwa agglomerates Li2O2 dan LiO2 terbentuk, sebagaidiperkirakan menggunakan kepadatan teori fungsi (DFT) perhitungandan spectroscopy.16,52,53 Raman berbeda dari hasilMedia berair, data EQCM ini mendukung nondissociativeadsorpsi untuk molekul oksigen, sebagai Li2O dibentuk selamaDissociative adsorpsi dan rasio massa perubahan/biayadiharapkan untuk Li2O (7.8 × 10−5 g C−1) tidak diamati.Nondissociative adsorpsi untuk molekul oksigen juga telahdidukung oleh isotop label experiments.54Kurva chronoamperometric 2,34, 2.10 dan 1,90 V diGambar 3 adalah bukti untuk ORR jenuh oksigen 0.1 mLiClO4/DME. Kepadatan arus menurun cepat dalamawal, tetapi kesetimbangan tidak tercapai bahkan setelahlama karena produk reaksi sebagian diblokirPlatinum permukaan, seperti yang disebutkan di atas. Percobaan inimembantu untuk menentukan waktu yang akan diperlukan untuk mendapatkanpseudosteady menyatakan, yang sangat penting ketika melakukanelektrokimia impedansi spektroskopi di dc potensi. Inidata juga menyediakan informasi penting tentang cara saat iniberosilasi selama reaksi elektrokimia. Osilasi inisesuai dengan ca. 5% dari rapatan arus di 2,34V, dan meningkat menjadi sekitar 10% di 2.10 dan 1,90 V. Sejak kinetikmodel di atas melibatkan kesetimbangan untuk ORR, impedansidata harus dipasang pada frekuensi tinggi (dari 2 kHz hingga 3 Hz)untuk meminimalkan efek osilasi ini, yang berlangsung sekitar100 s. Selain itu, data impedansi tidak berubah setelahbeberapa pengukuran berturut-turut dalam rentang frekuensi ini.DME, molekul oksigen, dan platinum katalis berpartisipasi dalamosilasi ini saat ini, karena yang terakhir tidak terjadiSelama percobaan chronoamperometric dilakukan dengan lainelektroda dan dengan dan diangin-anginkan atau deaerated pelarut (misalnya,Propylene karbonat atau kaca karbon elektroda). Studi tentangosilasi ini akan disajikan di tempat lain.Gambar 4 menunjukkan diagram Nyquist dan Bode (dalam inset)Diperoleh dalam larutan elektrolit jenuh oksigen yang mengandung0,1 M LiClO4/DME, juga seperti jenuh oksigen 0.1 MTBAClO4/DME, () 2,34, (b) 2.10, dan (c) 1,90 V.diagram yang dilapisi dengan gangguan potensial ac5 mV dari 10 kHz hingga 10 mHz. Dengan ekstrapolasilingkaran di 2,34 V, biaya transfer perlawanan (Rct) adalahditetapkan sebagai 155 kΩ·cm2 hadapan oksigen terlarutdi 0.1 M LiClO4/DME. RCT mengecil dc potensimenjadi lebih positif, dan semicircles dua muncul di 2.10 dan1,90 V. Yang semicircles tinggi dan frekuensi rendahmungkin terkait dengan ORR dan pelarut degradasi,masing-masing. Dalam diagram Bode, dua proses yang berbeda yangdiidentifikasi konstanta waktu berbeda tampilan yang, di positif kurangpotensi. Nilai-nilai Rct yang terkait dengan ORR adalah 20 dan 7kΩ·cm2 di 2.10 dan 1,90 V, masing-masing.Elektrokimia impedansi spektroskopi di jenuh oksigenlarutan elektrolit yang terdiri dari 0,1 M TBAClO4/DME mungkinmengkonfirmasi reaksi degradasi ORR dan DME 0.1 mLiClO4/DME, karena dapat tetrabutylammonium kation (TBA +)mempertahankan ORR melalui transfer satu-elektron tanpa pelarut apapundegradation26TBA + ion adalah buruk solvated dan cenderungbentuk complex.39,55,56 TBA−O2 stabil menurut hard−teori lembut acid−base (HSAB), O2− adalah basis yang lembut dengan lebih tinggiafinitas untuk TBA + (solvated buruk lembut asam) daripada untuk Li + ion(asam keras) 26 dicatat bahwa kedua lingkaran (atau kedua kalinyakonstan) tidak muncul dalam diagram Nyquist di 2,34,2.10, atau 1,90 V ketika 0.1 M TBAClO4/DME adalah elektrolitsolusi. Oleh karena itu, kedua lingkaran kekerapan rendah di0,1 M LiClO4/DME di 2.10 dan 1.90 V (angka 4b dan 4c)merujuk kepada pelarut degradasi oleh O2− atau Li2O2.39, 57Reaksi degradasi pelarut (tidak termasuk dalam reaksimekanisme) di 2.10 dan 1,90 V memodifikasi derajat cakupanproduk reaksi dan intermediet ORR di mapan,dan ini dapat mengganggu penentuan konstanta tingkat.Namun, kami memilih untuk mempertimbangkan kinetik konstanta diperkirakanpada potensi dc ini, karena dimasukkannya degradasi
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: