Throughout this section, we talk about bond price changes or bond pric terjemahan - Throughout this section, we talk about bond price changes or bond pric Bahasa Indonesia Bagaimana mengatakan

Throughout this section, we talk ab

Throughout this section, we talk about bond price changes or bond price volatility interchangeably.
Bond price volatility is measured as the percentage change in the price of the
bond, computed as follows:
EPB
BPB
− 1
where:
EPB = the ending price of the bond
BPB = the beginning price of the bond
A bond with high price volatility or high interest rate sensitivity is one that experiences a relatively
large percentage price change for a given change in yields.
Bond price volatility is influenced by more than yield behavior alone. Malkiel (1962) used
the bond valuation model to demonstrate that the market price of a bond is a function of four
factors: (1) its par value, (2) its coupon, (3) the number of years to its maturity, and (4) the
prevailing market interest rate. Malkiel’s mathematical proofs showed the following relationships
between yield (interest rate) changes and bond price behavior:
1. Bond prices move inversely to bond yields (interest rates).
2. For a given change in yields (interest rates), longer maturity bonds experience larger price
changes; thus, bond price volatility is directly related to term to maturity.
3. Bond price volatility increases at a diminishing rate as term to maturity increases.
4. Bond price movements resulting from equal absolute increases or decreases in yield are
not symmetrical. A decrease in yield raises bond prices by more than an increase in yield
of the same amount lowers prices.
5. Higher coupon issues show smaller percentage price fluctuation for a given change in
yield; thus, bond price volatility is inversely related to coupon.
Homer and Leibowitz (1972) showed that the absolute level of market yields also affects
bond price volatility. As the level of prevailing yields rises, the price volatility of bonds increases,
assuming a constant percentage change in market yields. Note that if you assume a
constant percentage change in yield, the basis-point change will be greater when rates are
high. For example, a 25 percent change in interest rates when rates are at 4 percent will be
100 basis points; the same 25 percent change when rates are at 8 percent will be a 200 basispoint
change. In the discussion of bond duration, we will see that this difference in basis point
change is important.
Exhibits 18.12, 18.13, and 18.14 demonstrate these relationships assuming semiannual compounding.
Exhibit 18.12 demonstrates the effect of maturity on price volatility. In all four maturity
classes, we assume a bond with an 8 percent coupon and assume that the discount rate
(YTM) changes from 7 percent to 10 percent. The only difference among the four cases is the
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Throughout this section, we talk about bond price changes or bond price volatility interchangeably.Bond price volatility is measured as the percentage change in the price of thebond, computed as follows:EPBBPB− 1where:EPB = the ending price of the bondBPB = the beginning price of the bondA bond with high price volatility or high interest rate sensitivity is one that experiences a relativelylarge percentage price change for a given change in yields.Bond price volatility is influenced by more than yield behavior alone. Malkiel (1962) usedthe bond valuation model to demonstrate that the market price of a bond is a function of fourfactors: (1) its par value, (2) its coupon, (3) the number of years to its maturity, and (4) theprevailing market interest rate. Malkiel’s mathematical proofs showed the following relationshipsbetween yield (interest rate) changes and bond price behavior:1. Bond prices move inversely to bond yields (interest rates).2. For a given change in yields (interest rates), longer maturity bonds experience larger pricechanges; thus, bond price volatility is directly related to term to maturity.3. Bond price volatility increases at a diminishing rate as term to maturity increases.4. Bond price movements resulting from equal absolute increases or decreases in yield arenot symmetrical. A decrease in yield raises bond prices by more than an increase in yieldof the same amount lowers prices.5. Higher coupon issues show smaller percentage price fluctuation for a given change inyield; thus, bond price volatility is inversely related to coupon.Homer and Leibowitz (1972) showed that the absolute level of market yields also affectsbond price volatility. As the level of prevailing yields rises, the price volatility of bonds increases,assuming a constant percentage change in market yields. Note that if you assume aconstant percentage change in yield, the basis-point change will be greater when rates arehigh. For example, a 25 percent change in interest rates when rates are at 4 percent will be100 basis points; the same 25 percent change when rates are at 8 percent will be a 200 basispointchange. In the discussion of bond duration, we will see that this difference in basis pointchange is important.Exhibits 18.12, 18.13, and 18.14 demonstrate these relationships assuming semiannual compounding.Exhibit 18.12 demonstrates the effect of maturity on price volatility. In all four maturityclasses, we assume a bond with an 8 percent coupon and assume that the discount rate(YTM) changes from 7 percent to 10 percent. The only difference among the four cases is the
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Sepanjang bagian ini, kita berbicara tentang perubahan harga obligasi atau volatilitas harga obligasi secara bergantian.
Volatilitas harga obligasi diukur sebagai persentase perubahan harga
obligasi, sebagai berikut:
EPB
BPB
- 1
di mana:
EPB = harga akhir dari obligasi
BPB = harga awal obligasi
Obligasi dengan volatilitas harga tinggi atau sensitivitas suku bunga yang tinggi adalah salah satu yang mengalami relatif
perubahan harga sebagian besar untuk perubahan yang diberikan dalam hasil.
volatilitas harga obligasi dipengaruhi oleh lebih dari perilaku hasil sendiri. Malkiel (1962) digunakan
model valuasi obligasi untuk menunjukkan bahwa harga pasar obligasi adalah fungsi dari empat
faktor: (1) nilai nominal, (2) kupon nya, (3) jumlah tahun untuk jatuh tempo, dan (4)
tingkat bunga pasar yang berlaku. Bukti matematika Malkiel menunjukkan hubungan berikut
antara hasil (bunga) perubahan dan perilaku harga obligasi:
1. Harga obligasi bergerak terbalik terhadap imbal hasil obligasi (suku bunga).
2. Untuk perubahan yang diberikan dalam hasil (suku bunga), obligasi jatuh tempo lagi mengalami harga yang lebih besar
perubahan; dengan demikian, volatilitas harga obligasi secara langsung berkaitan dengan jangka jatuh tempo.
3. Harga obligasi meningkat volatilitas pada tingkat berkurang sebagai istilah untuk jatuh tempo meningkat.
4. Pergerakan harga obligasi akibat kenaikan absolut sama atau penurunan yield yang
tidak simetris. Penurunan yield obligasi menaikkan harga lebih dari peningkatan yield
dari jumlah yang sama menurunkan harga.
5. Masalah kupon yang lebih tinggi menunjukkan fluktuasi harga persentase yang lebih kecil untuk perubahan yang diberikan dalam
hasil; dengan demikian, volatilitas harga obligasi berbanding terbalik dengan kupon.
Homer dan Leibowitz (1972) menunjukkan bahwa tingkat absolut hasil pasar juga mempengaruhi
volatilitas harga obligasi. Sebagai tingkat imbal hasil yang berlaku naik, volatilitas harga obligasi meningkat,
dengan asumsi persentase perubahan konstan dalam hasil pasar. Catatan bahwa jika Anda menganggap
persentase perubahan konstan dalam hasil, perubahan basis poin akan lebih besar ketika harga
tinggi. Misalnya, perubahan 25 persen suku bunga ketika harga di 4 persen akan
100 basis poin; sama perubahan 25 persen ketika harga berada di 8 persen akan menjadi 200 basispoint
perubahan. Dalam pembahasan durasi obligasi, kita akan melihat bahwa perbedaan ini di basis poin
perubahan penting.
Pameran 18,12, 18,13, dan 18,14 menunjukkan hubungan ini dengan asumsi peracikan setengah tahunan.
Bukti 18,12 menunjukkan efek dari jatuh tempo pada volatilitas harga. Dalam keempat jatuh tempo
kelas, kita asumsikan ikatan dengan kupon 8 persen dan menganggap bahwa tingkat diskonto
(YTM) perubahan dari 7 persen menjadi 10 persen. Satu-satunya perbedaan antara empat kasus adalah
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: