Hasil (
Bahasa Indonesia) 1:
[Salinan]Disalin!
Pemecahan masalah Istilah masalah dan memecahkan masalah terjadi banyak disiplin tetapi mungkin lebih berhubungan erat dengan matematika daripada yang lain. Selama bertahun-tahun banyak yang telah ditulis tentang masalah dan pemecahan sehingga menimbulkan berbagai sekolah pemikiran.Pendidikan matematika, pemecahan masalah telah ditekankan sejak Polya's bekerja di tahun 1940-an. POLYA, yang sering dianggap sebagai ayah dari pemecahan masalah, menggambarkannya sebagai berikutMemecahkan masalah adalah menemukan cara tidak diketahui untuk akhir yang jelas dipahami untuk menemukan cara dimana ada cara dikenal off-tangan. Sebuah pertanyaan menjadi masalah, itu harus hadir tantangan yang tidak dapat diselesaikan oleh beberapa prosedur rutin. Pemecahan masalah adalah proses menerima tantangan dan berjuang untuk mengatasinya.POLYA percaya bahwa untuk memecahkan masalah mahasiswa harus pertama datang untuk berdamai dengan apa masalahnya adalah benar-benar tentang. Sekali ia telah memperoleh wawasan tentang masalah hanya kemudian dapat menyusun rencana untuk memecahkannya. Kapan rencana telah dilakukan Polya menekankan perlu untuk melihat kembali atas masalah dalam hal solusi. Nya empat langkah pemecahan masalah yang model, yang telah digunakan sebagai dasar untuk banyak kerangka kerja berikutnya, dapat diringkas sebagai:1 memahami masalah2 merancang sebuah rencana3 melaksanakan rencana4 Lihat bockSchoenfeld (1989) dibahas pemecahan masalah dalam hal 'tugas untuk diselesaikan'. Dia percaya bahwa untuk masalah memecahkan terjadi seorang mahasiswa pertama harus termotivasi untuk memecahkan masalah dan tidak ada cara yang jelas untuk melakukannya. Dia menyatakan bahwa, untuk setiap siswa, masalah matematika adalah tugas:♦ yang siswa tertarik dan bergerak dan untuk yang ingin mendapatkan resolusi; dan♦ yang siswa tidak memiliki mudah diakses sarana matematika yang digunakan untuk mencapai resolusi.Siemon dan Booker (1990) memiliki pandangan yang sama masalah memecahkan, menyoroti kebutuhan bagi siswa untuk ingin atau perlu memecahkan masalah secara individual maupun kelompok, dan memiliki tidak berarti segera untuk melakukannya. Mereka melanjutkan untuk menjelaskan pemecahan masalah sebagai proses mencapai solusi untuk masalah, sering dengan diidentifikasi fase awal, pertengahan dan akhir. Mereka menyatakan bahwa masalah adalah tugas atau situasi:♦ yang Anda ingin atau perlu memecahkan;♦ yang Anda percaya Anda memiliki beberapa kesempatan yang wajar untuk menyelesaikan, baik secara perorangan maupun kelompok; Tapi♦ yang Anda atau kelompok tidak memiliki solusi yang segera tersedia strategi.Pandangan ini pada pemecahan masalah menyoroti bahwa masalah adalah tugas yang ada yang tidak ada solusi langsung atau jelas dan pemecahan masalah proses siswa melakukan ketika terlibat dengan tugas ini. Pemecahan masalah melibatkan terlibat dalam tugas-tugas yang strategi solusi ini tidak segera jelas. Untuk menemukan solusi yang mungkin siswa perlu menarik pada pengetahuan dan proses dan akan sering mengembangkan pengetahuan baru dan pemahaman mereka kemajuan menuju solusi.Isu utama dalam pemecahan masalah ini ide tidak ada solusi yang segera tersedia atau jelas. Tugas yang merupakan masalah bagi siswa tahun 1 tidak akan menjadi masalah bagi pelajar Year 7. Memang tugas yang akan menjadi masalah untuk beberapa siswa di tingkat tahun tertentu tidak akan menjadi masalah bagi semua siswa di tingkat tahun itu.Tugas ini tidak akan menjadi masalah bagi pelajar Year 7 seperti kebanyakan siswa akan mampu memikirkan solusi segera. Matematika pengetahuan dan pemahaman tentang konsep perkalian dan fakta-fakta dasar perkalian akan memimpin mereka segera untuk berpikir tentang 3 balita dan datang dengan solusi 15 anak anjing. Tugas ini karena itu tidak dapat dipertimbangkan masalah untuk para mahasiswa.Namun, bagi siswa di kelas 1 yang dalam banyak kasus tidak akan pengetahuan matematika dan pemahaman ini, itu bisa juga dapat dipahami sebagai masalah yang ada solusi langsung atau jelas. Dalam kebanyakan situasi 1 tahun mahasiswa akan perlu untuk berpikir tentang bagaimana untuk memecahkan masalah ini dan mungkin akan datang dengan kemungkinan menggunakan bahan-bahan dan menghitung atau menggambar diagram dan menghitung.Ketika memilih masalah untuk program kelas sangat penting untuk menjaga dalam pikiran konsep pemecahan masalah sebagai suatu tugas atau situasi yang ada tidak ada solusi langsung atau jelas. Kadang-kadang siswa kelas mungkin akan 'pemecahan masalah' ketika pada kenyataannya mereka membaca 'masalah' dan segera mengetahui apa yang harus dilakukan untuk memecahkan ini 'masalah'. Dalam situasi ini aktivitas yang dilakukan oleh siswa sebenarnya tidak bisa dianggap menjadi pemecahan masalah.Strategi dan pemecahan masalahPada tahun 1965 Polya mengamati bahwa para siswa butuh teknik untuk membantu mereka berencana untuk solusi. Pengamatan ini disediakan katalis untuk lebih dari dua dekade penelitian ke dalam identifikasi dan pemanfaatan pemecahan strategi. Hasil dari penelitian ini pada akhirnya mengarah pada strategi yang didorong pemecahan masalah program di sekolah. Program-program ini berpusat di sekitar pengajaran strategi tertentu seperti membuat daftar, bekerja mundur, rasa dan memeriksa, dimana strategi daripada masalah adalah fokus. Strategi yang diperkenalkan dan kemudian kelas akan memecahkan berbagai masalah yang menggunakan strategi diidentifikasi.For example, the strategy of 'make a list' would be taught and then the class would spend time solving problems by making a list. Students did not need to understand or come to terms with problems as they knew immediately each one could be solved using the particular. This method of teaching problem solving continued for some time until researchers began to notice that students didn't necessarily become more proficient at problem solving in situations outside of the specific lessons. This thinking was not generalised into different situations where the students had to identify the appropriate strategy for themselves.Research began to focus on problem solving and cognition and the methodology of problem solving. This emphasis led to changes in the nature of the mathematics curriculum itself and strengthened the importance of problem solving in school mathematics. Throughout the 1970s the mathematics community expressed the need for clearer guidelines and a more concise sense of direction. The National Council of Teachers of Mathematics (NCTM, 1980a) responded to these concerns with a document titled Agenda for Action: Recommendations for School Mathematics of the 1980s, which outlined eight explicit recommendations, the first of which was that problem solving should be the focus of school mathematics.Pada tahun 1989 NCTM telah mengambil rekomendasi sebelumnya lebih jauh dan sekarang menyatakan bahwa pemecahan masalah harus menjadi bagian integral semua kegiatan matematika. Pemecahan masalah adalah untuk melihat bukan sebagai topik yang terpisah tetapi sebagai suatu proses yang harus menyerap seluruh matematika program dari awal sampai akhir. Melihat pemecahan masalah dengan cara ini akan memberikan konteks di mana konsep-konsep dan proses bisa dipelajari. Pendekatan ini memungkinkan konstruksi matematika didasarkan pada dan muncul dari siswa sendiri solusi untuk masalah yang, mereka, nyata dan asli. Oleh karena itu, sebagai pemecahan masalah seperti itu upaya individual, matematika menjadi fungsional dan bermakna bagi setiap individu.Panggilan serupa dibuat di Australia. Negara bagian dan wilayah Departemen Pendidikan mulai menafsirkan pemecahan masalah sebagai proses, menempatkan kepentingan pada prosedur dan strategi yang digunakan oleh siswa daripada jawaban mereka. Pemecahan masalah sering dipandang sebagai fokus utama dari kurikulum dan terintegrasi di seluruh semua bidang matematika.In 1991 the Australian Education Council published A National Statement on Mathematics for Australian Schools. The purpose of this statement was to provide a framework around which states and territories and thus schools could build their mathematics curriculum. It identifies important components of mathematics education and stales that experiences with problems should he provided to enable students to use a wide range of problem solving strategies across all topics in mathematics. This document is still the central framework for the various syllabuses that have evolved.Today many educators believe that the most important goal of the study of mathematics is fostering and developing students' abilities to solve problems. Yet, as mentioned, adherence to traditional styles of teaching leads to difficulties with problem solving. For problem solving to be worthwhile it is essential that teachers view it as a valuable, motivating and pedagogically sound approach for introducing, developing and applying concepts and processes.Instruksi kelompok kecil, mengajar tim, belajar pusat dan teknologi seperti komputer dan kalkulator telah menjadi semakin umum di kelas. 1 Namun, gaya pengajaran sering hanya dilakukan setelah 'pekerjaan nyata' selesai — setelah konten yang melibatkan peraturan dan prosedur telah diajarkan. Hal ini biasanya tidak digunakan sebagai alat pengajaran konsep tetapi sebagai konsolidasi atau penguatan. Kegiatan yang mana siswa busur dilihat untuk berbicara, berinteraksi dan bahkan menikmati diri mereka sendiri tidak selalu diterima sebagai pedagogis suara. Namun, ini adalah sering cara siswa belajar terbaik — dalam lingkungan dimana mereka dapat terlibat dalam kegiatan yang memungkinkan eksplorasi, bahasa dan sosialisasi yang mereka dapat membuat rasa ide-ide yang kompleks.Masalah-masalah yang berharga dan pengetahuan baru bangunanBagi siswa untuk benar-benar mengembangkan matematika cara berpikir dan nomor rasa pentinguntuk masalah-masalah berharga baik yang dipilih untuk program kelas. Keperluan guru tidak hanyauntuk memilih masalah yang ada tidak ada solusi langsung atau jelas tetapi juga untuk memilihmasalah yang akan mengkonsolidasikan, memperluas dan merangsang pengetahuan matematika danpemahaman.Ketika memilih masalah untuk kelas tertentu matematika guru perlu menjelajahi secara teliti masalah dan ide-ide matematis kemungkinan yang bisa dibawa oleh para siswa ketika bekerja melalui
Sedang diterjemahkan, harap tunggu..
