Systematic risk refers to the variation of a firm's price returns that terjemahan - Systematic risk refers to the variation of a firm's price returns that Bahasa Indonesia Bagaimana mengatakan

Systematic risk refers to the varia

Systematic risk refers to the variation of a firm's price returns that are associated with factors common to the market that cannot be diversified away. A common method of estimating the systematic risk of a firm is to use the capital asset pricing model (CAPM) ([36] Sharpe, 1964; [27] Lintner, 1965) to calculate a time-invariant or moving average beta. Subsequently, a number of accounting studies have attempted to identify accounting variables that can be linked to this measure of beta risk. A key issue is the theoretical role that certain accounting variables are hypothesised to play in determining systematic risk ([33] Ryan 1997; [23] Laveren et al. , 1997) and, hence, a model that theoretically relates systematic risk to accounting variables is presented in Figure 1 [Figure omitted. See Article Image.] ([29] Penman, 2001).

This model explains systematic risk as a dual function of the return on common equity risk (ROCE) and growth risk, similar in concept to the familiar DuPont type analysis. ROCE risk is further broken down into operating risk and financial risk whereby financing risk is split into financial leverage risk and borrowing cost risk. Furthermore, operating risk is a function of profit margin, asset turnover, and operating liability leverage risk; where profit margin risk is further still a function of expense risk and operating leverage risk. Hence, this framework provides a theoretical overview of the interrelationships between accounting ratios and illustrates the role of accounting information in estimating risk.

A number of studies extended the above theoretical model by attempting to identify a set of risk-related accounting variables that can be expirically linked to systematic risk. The seminal expirical work in this area, [4] Beaver et al. (1970), examined seven accounting variables including dividend payout, asset growth, financial leverage, asset size, current ratio, variance in earnings, and accounting beta. They provided evidence to show that accounting variables are useful in the prediction of systematic risk, in so far as the best fit accounting model is a better predictor of systematic risk than the current beta, that is a naïve forecasting model. Moreover, their best fit model was relatively parsimonious and incorporated only three of the seven accounting variables: dividend payout ratio (negative), asset growth (positive), and earnings variability (positive), but these explained 45 per cent of the cross-sectional variation in market beta. The [4] Beaver et al. (1970) paper provided the foundation for subsequent research during the 1970s that expanded upon the seven accounting variables examined. For example, a set of 33 accounting and non-accounting variables[2] were used by [31] Rosenberg and McKibben (1973) to determine an accounting measure of systematic risk. Their final model incorporated 13[3] of the 33 variables explained and explained 33 per cent of systematic beta. This period can be categorised as inductive driven data research with the number of accounting variables examined differing greatly, but with some studies using up to 101 variables ([32] Rosenberg and Marathe, 1975).

Other researchers concentrated on specific variables related to tightly argued theoretical constructs that tended to be highly specific and narrowly defined. For example, research based on operating leverage ([24] Lev, 1974), variability of sales and financial leverage ([25] Lev and Kunitzky, 1974), turnover and coverage ratios ([5] Bildersee, 1975), managerial actions ([5] Bildersee, 1975), industry effect ([24] Lev, 1974; [25] Lev and Kunitzky, 1974; [5] Bildersee, 1975), financial structure ([18] Hill and Stone, 1980), and different methods of calculating accounting beta ([3] Beaver and Manegold, 1975). Whilst, the general conclusion of these studies was that accounting variables contain information related to risk, there is little agreement over which accounting variables are more risk relevant and even less discussion on how to benchmark these variables, with a static CAPM systematic risk proxy adopted as the given benchmark. An exception is a study of the Belgium stock market by [23] Laveren et al. (1997) that compared the ability of accounting variables to estimate both a levered and an unlevered beta[4].

Recent research has also extended the accounting variables by examining off-balance sheet accounting items. For example, [28] McAnally (1996) found that credit-risk related instruments are positively related to risk and market-related instruments[5] are negatively related to risk. [10] Cheon et al. (1996) added to this literature by examined foreign exchange and interest rate derivatives and found a significant negative association between these variables and beta.

In terms of the Australian evidence there is only one published paper that addresses this research issue. [9] Castagna and Matolcsy (1978) examined 140 Australian firms between 1967 and 1976 and investigated seven accounting variables[6] and one non-accounting variable (trading volume). The results were similar to the US studies with the exception of firm size, which illustrated a positive association with beta where a negative association had been found in the US. Several reasons for this were suggested including: (i) larger firms in Australia engage in riskier operations than small firms, (ii) sampling issues where the sample included primarily large firms, and (iii) the results are time-period specific.

In summary, a variety of accounting variables have been examined, in association and predictive studies, with results indicating that the accounting data can explain up to 45 per cent of the cross-sectional variation in systematic beta and that accounting models may be able to outperform predictions from a naïve beta model. As [33] Ryan (1997) points out, there is substantial scope for further research, and theoretical development of the proposition that accounting variables can significantly explain and proxy for systematic risk. Our extensions are to use an updated data set, to incorporating a range of systematic risk measures (some of which are more appropriate to a small economy setting) and then to compare them with the association from the accounting variables. We also address some of the concerns expressed by [9] Castagna and Matolcsy (1978) regarding firm size and whether the results are time specific.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Risiko sistematis mengacu pada variasi kembali harga perusahaan yang terkait dengan faktor-faktor yang umum untuk pasar yang tidak diversifikasi pergi. Metode umum memperkirakan risiko sistematis sebuah perusahaan adalah untuk menggunakan aset modal harga model (CAPM) ([36] Sharpe, 1964; [27] Lintner, 1965) untuk menghitung waktu-invarian atau bergerak rata-rata beta. Selanjutnya, sejumlah Studi Akuntansi telah berusaha untuk mengidentifikasi variabel akuntansi yang dapat dihubungkan dengan ukuran ini risiko beta. Isu utama adalah peran teoritis yang tertentu akuntansi variabel hypothesised untuk bermain dalam menentukan risiko sistematis ([33] Ryan 1997; [23] Laveren et al., 1997) dan, dengan itu, model yang secara teoritis berkaitan dengan risiko sistematis akuntansi variabel disajikan dalam gambar 1 [angka dihilangkan. Lihat artikel gambar.] ([29] penman, 2001).

model ini menjelaskan risiko yang sistematis sebagai fungsi ganda kembali pada ekuitas umum risiko (ROCE) dan risiko pertumbuhan, dalam konsep mirip dengan DuPont jenis analisis yang akrab. ROCE risiko lebih lanjut dipecah menjadi operasi risiko dan risiko keuangan dimana pembiayaan risiko dibagi menjadi risiko keuangan leverage dan meminjam resiko biaya. Selain itu, operasi risiko adalah fungsi dari margin keuntungan, aset omset dan operasi leverage tanggung jawab risiko; mana margin keuntungan risiko adalah lebih lanjut masih fungsi dari beban risiko dan operasi leverage risiko. Oleh karena itu, kerangka kerja ini memberikan gambaran teoritis dari antar-hubungan antara rasio akuntansi dan menggambarkan peran informasi akuntansi dalam memperkirakan risiko.

beberapa studi diperpanjang model teoritis atas dengan mencoba untuk mengidentifikasi serangkaian risiko yang berhubungan dengan akuntansi variabel yang dapat expirically dihubungkan dengan risiko yang sistematis. Pekerjaan expirical di daerah ini, [4] beaver et al. (1970), diteliti tujuh akuntansi variabel termasuk pembayaran dividen, pertumbuhan aset, leverage keuangan, aset, rasio lancar, varians dalam pendapatan, dan akuntansi beta. Mereka menyediakan bukti yang menunjukkan bahwa variabel akuntansi berguna di prediksi sistematis risiko, sejauh model akuntansi cocok yang terbaik adalah prediktor sistematis risiko lebih baik daripada beta saat ini, yang naif peramalan model. Selain itu, model cocok mereka terbaik relatif terlalu kikir dan dimasukkan hanya tiga variabel akuntansi tujuh: rasio pembayaran dividen (negatif), pertumbuhan aset (positif) dan variabilitas penghasilan (positif), tetapi ini menjelaskan 45 persen dari variasi penampang pasar beta. [4] Beaver et al. (1970) karya disediakan Yayasan penelitian berikutnya selama 1970-an yang diperluas variabel akuntansi tujuh diperiksa. Misalnya, seperangkat 33 akuntansi dan bebas-akuntansi variabel [2] yang digunakan oleh Rosenberg [31] dan McKibben (1973) untuk menentukan ukuran akuntansi yang sistematis risiko. Model akhir mereka dimasukkan 13 [3] 33 variabel dijelaskan dan menjelaskan 33 persen sistematis beta. Periode ini dapat dikategorikan sebagai induktif didorong data penelitian dengan jumlah variabel akuntansi diteliti sangat berbeda, tetapi dengan beberapa penelitian yang menggunakan variabel hingga 101 (Rosenberg [32] dan Marathe, 1975).

peneliti lain terkonsentrasi pada variabel tertentu yang berkaitan erat dikatakan konstruksi teoritis yang cenderung sangat spesifik dan nyaris didefinisikan. Misalnya, penelitian berdasarkan operasi leverage ([24] Lev, 1974), variabilitas penjualan dan keuangan leverage (Lev [25] dan Kunitzky, 1974), omset dan cakupan rasio ([5] Bildersee, 1975), manajerial tindakan ([5] Bildersee, 1975), industri efek ([24] Lev, 1974; [25] lev dan Kunitzky, 1974; [5] Bildersee, 1975), struktur keuangan ([18] Hill dan batu, 1980), dan metode yang berbeda menghitung akuntansi beta (Beaver [3] dan Manegold, 1975). Sementara, secara umum kesimpulan dari studi ini adalah bahwa akuntansi variabel berisi informasi yang terkait dengan risiko, ada sedikit kesepakatan di mana variabel akuntansi adalah lebih banyak risiko relevan dan bahkan kurang diskusi tentang bagaimana patokan variabel ini, dengan statis CAPM risiko sistematis proxy diadopsi sebagai patokan tertentu. Pengecualian adalah studi tentang pasar saham Belgia oleh [23] Laveren et al. (1997) yang membandingkan kemampuan akuntansi variabel untuk memperkirakan levered dan beta unlevered [4].

penelitian terbaru juga diperpanjang variabel akuntansi dengan memeriksa off neraca akuntansi item. Misalnya, [28] McAnally (1996) menemukan bahwa risiko kredit terkait instrumen positif berkaitan dengan risiko dan berhubungan dengan pasar instrumen [5] negatif terkait dengan risiko. [10] Cheon et al. (1996) ditambahkan ke sastra ini oleh diteliti Valuta Asing dan bunga derivatif dan menemukan sebuah asosiasi negatif yang signifikan antara variabel dan beta.

Dalam hal Australia bukti ada hanya satu kertas diterbitkan yang membahas masalah penelitian ini. [9] Castagna dan Matolcsy (1978) diperiksa 140 perusahaan Australia antara 1967 dan 1976 dan diselidiki akuntansi tujuh variabel [6] dan satu variabel bebas-Akuntansi (volume perdagangan). Hasilnya mirip dengan studi US kecuali perusahaan ukuran, yang diilustrasikan sebuah asosiasi yang positif dengan beta yang mana Asosiasi negatif yang telah ditemukan di Amerika Serikat. Beberapa alasan untuk ini diusulkan termasuk: (i) lebih besar perusahaan di Australia terlibat dalam operasi berisiko daripada perusahaan-perusahaan kecil, (ii) sampling masalah mana sampel termasuk terutama perusahaan-perusahaan besar, dan (iii) hasil yang jangka waktu spesifik.

Singkatnya, berbagai variabel akuntansi telah diperiksa, Asosiasi dan studi-studi prediktif, dengan hasil yang menunjukkan bahwa data akuntansi yang dapat menjelaskan hingga 45 persen dari variasi penampang sistematis beta dan bahwa model akuntansi mungkin mampu mengungguli prediksi dari model beta naif. Seperti [33] Ryan (1997) poin keluar, ada substansial cakupan untuk penelitian lebih lanjut, dan pengembangan teoritis proposisi yang akuntansi variabel secara signifikan dapat menjelaskan dan proxy untuk risiko yang sistematis. Ekstensi kami akan menggunakan set data diperbarui, untuk memasukkan berbagai ukuran risiko sistematis (beberapa di antaranya lebih tepat untuk suasana ekonomi kecil) dan membandingkan mereka dengan Asosiasi dari variabel akuntansi. Kami juga alamat beberapa keprihatinan yang diungkapkan oleh Castagna [9] dan Matolcsy (1978) mengenai ukuran perusahaan dan apakah hasil waktu tertentu.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Systematic risk refers to the variation of a firm's price returns that are associated with factors common to the market that cannot be diversified away. A common method of estimating the systematic risk of a firm is to use the capital asset pricing model (CAPM) ([36] Sharpe, 1964; [27] Lintner, 1965) to calculate a time-invariant or moving average beta. Subsequently, a number of accounting studies have attempted to identify accounting variables that can be linked to this measure of beta risk. A key issue is the theoretical role that certain accounting variables are hypothesised to play in determining systematic risk ([33] Ryan 1997; [23] Laveren et al. , 1997) and, hence, a model that theoretically relates systematic risk to accounting variables is presented in Figure 1 [Figure omitted. See Article Image.] ([29] Penman, 2001).

This model explains systematic risk as a dual function of the return on common equity risk (ROCE) and growth risk, similar in concept to the familiar DuPont type analysis. ROCE risk is further broken down into operating risk and financial risk whereby financing risk is split into financial leverage risk and borrowing cost risk. Furthermore, operating risk is a function of profit margin, asset turnover, and operating liability leverage risk; where profit margin risk is further still a function of expense risk and operating leverage risk. Hence, this framework provides a theoretical overview of the interrelationships between accounting ratios and illustrates the role of accounting information in estimating risk.

A number of studies extended the above theoretical model by attempting to identify a set of risk-related accounting variables that can be expirically linked to systematic risk. The seminal expirical work in this area, [4] Beaver et al. (1970), examined seven accounting variables including dividend payout, asset growth, financial leverage, asset size, current ratio, variance in earnings, and accounting beta. They provided evidence to show that accounting variables are useful in the prediction of systematic risk, in so far as the best fit accounting model is a better predictor of systematic risk than the current beta, that is a naïve forecasting model. Moreover, their best fit model was relatively parsimonious and incorporated only three of the seven accounting variables: dividend payout ratio (negative), asset growth (positive), and earnings variability (positive), but these explained 45 per cent of the cross-sectional variation in market beta. The [4] Beaver et al. (1970) paper provided the foundation for subsequent research during the 1970s that expanded upon the seven accounting variables examined. For example, a set of 33 accounting and non-accounting variables[2] were used by [31] Rosenberg and McKibben (1973) to determine an accounting measure of systematic risk. Their final model incorporated 13[3] of the 33 variables explained and explained 33 per cent of systematic beta. This period can be categorised as inductive driven data research with the number of accounting variables examined differing greatly, but with some studies using up to 101 variables ([32] Rosenberg and Marathe, 1975).

Other researchers concentrated on specific variables related to tightly argued theoretical constructs that tended to be highly specific and narrowly defined. For example, research based on operating leverage ([24] Lev, 1974), variability of sales and financial leverage ([25] Lev and Kunitzky, 1974), turnover and coverage ratios ([5] Bildersee, 1975), managerial actions ([5] Bildersee, 1975), industry effect ([24] Lev, 1974; [25] Lev and Kunitzky, 1974; [5] Bildersee, 1975), financial structure ([18] Hill and Stone, 1980), and different methods of calculating accounting beta ([3] Beaver and Manegold, 1975). Whilst, the general conclusion of these studies was that accounting variables contain information related to risk, there is little agreement over which accounting variables are more risk relevant and even less discussion on how to benchmark these variables, with a static CAPM systematic risk proxy adopted as the given benchmark. An exception is a study of the Belgium stock market by [23] Laveren et al. (1997) that compared the ability of accounting variables to estimate both a levered and an unlevered beta[4].

Recent research has also extended the accounting variables by examining off-balance sheet accounting items. For example, [28] McAnally (1996) found that credit-risk related instruments are positively related to risk and market-related instruments[5] are negatively related to risk. [10] Cheon et al. (1996) added to this literature by examined foreign exchange and interest rate derivatives and found a significant negative association between these variables and beta.

In terms of the Australian evidence there is only one published paper that addresses this research issue. [9] Castagna and Matolcsy (1978) examined 140 Australian firms between 1967 and 1976 and investigated seven accounting variables[6] and one non-accounting variable (trading volume). The results were similar to the US studies with the exception of firm size, which illustrated a positive association with beta where a negative association had been found in the US. Several reasons for this were suggested including: (i) larger firms in Australia engage in riskier operations than small firms, (ii) sampling issues where the sample included primarily large firms, and (iii) the results are time-period specific.

In summary, a variety of accounting variables have been examined, in association and predictive studies, with results indicating that the accounting data can explain up to 45 per cent of the cross-sectional variation in systematic beta and that accounting models may be able to outperform predictions from a naïve beta model. As [33] Ryan (1997) points out, there is substantial scope for further research, and theoretical development of the proposition that accounting variables can significantly explain and proxy for systematic risk. Our extensions are to use an updated data set, to incorporating a range of systematic risk measures (some of which are more appropriate to a small economy setting) and then to compare them with the association from the accounting variables. We also address some of the concerns expressed by [9] Castagna and Matolcsy (1978) regarding firm size and whether the results are time specific.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: