Item Response TheoryItem Response Theory is a general method for model terjemahan - Item Response TheoryItem Response Theory is a general method for model Bahasa Indonesia Bagaimana mengatakan

Item Response TheoryItem Response T

Item Response Theory
Item Response Theory is a general
method for modelling the precision
(or reliability) of a set of items across
different levels of a latent trait. For
example, in education, an ‘easy’ test
might reliably differentiate ‘very poor’
students from everyone else, but be less
reliable in differentiating ‘excellent’
students from everyone else. Similarly,
the Mini-IPIP6 measure of Extraversion
might be better (i.e., more precise) at
differentiating between people who
are low in Extraversion from everyone
else, relative to how accurate it is at
differentiating between people high in
Extraversion relative to others.
A reasonably even level of
measurement precision is extremely
important for a number of reasons. Skew
in measurement precision means that
a scale might be more reliable when
measuring variability at the low level
of a trait relative to variability at the
high level of the trait. This can lead to
biased estimates of the trait depending
on a person’s latent trait level. Such bias
can also lead to inaccurate conclusions
about the stability of the trait across
time, as it might appear that people who
are low in a trait change less in that trait
over time, whereas people high in the
trait may (spuriously) seem to change
more in their trait level. Rather than
reflecting genuine differential change,
if measurement precision is uneven,
this could simply be due to less reliable
measures across time at a given trait
level and hence more variability in the
measure. This could make it look like
people have changed more at one trait
level relative to another.
So how does Item Response Theory
actually work? To model the precision of
a scale across the trait range, we need to
know about two distinct parameters of
each item. These are item difficulty and
item discrimination. Stated formally, the
logic behind a two-parameter logistic
item response model (2PLM; Birnbaum,
1968) can be summarized as follows:
(1.0) Pj
(θi
) = 1 / (1 + exp(-αj
(θi
- βj
)))
This equation states that the
probability that a given individual (j)
with a given level of trait θ will have
a level of that trait defined by one
aspect of the person (their true trait
level), and two aspects of the way it is
measured (or item parameters). These
two parameters are item difficulty (βj
)
and item discrimination (αj
). In this
model, trait levels can be thought of
as reflecting a standardized (z-scored)
range, with a Mean of 0 and Standard
Deviation of 1.
Item difficulty reflects the level of
the trait that a person would need to
have a 1 in 2 (50%) chance of scoring
in the positive direction on the item.
For example, a person with the sample
mean level of a trait (θ = 0), would have
a 50% chance of scoring in the positive
(high trait) direction on an item with a
difficulty value of 0. Similarly, a person
with a trait level one unit above the
mean (θ = 1), would have a 50% chance
of scoring in the positive (high trait)
direction on an item with a difficulty
value of 1.
What this means is that items that
have higher difficulty values tend to
be endorsed by fewer individuals (i.e.,
only those with higher levels of the
trait). The term difficulty in this context
arises from the fact that Item Response
Theory tended to be used originally
to model performance in educational
assessments, where only students with
a high latent academic ability would be
likely to get a positive (correct) score on
more difficult test items.
When examining ratings of Likert
items, Item Response Theory provides
a series of discrimination values in
sequence for the set of (ordered) possible
responses. That is, the lowest score, for
example 1 versus any other score from
2-7; a score of 1 or 2 versus any other
higher score from 3-7, and so on. With
a 7-point Likert scale, there are therefo
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Item Response TheoryItem Response Theory is a general method for modelling the precision (or reliability) of a set of items across different levels of a latent trait. For example, in education, an ‘easy’ test might reliably differentiate ‘very poor’ students from everyone else, but be less reliable in differentiating ‘excellent’ students from everyone else. Similarly, the Mini-IPIP6 measure of Extraversion might be better (i.e., more precise) at differentiating between people who are low in Extraversion from everyone else, relative to how accurate it is at differentiating between people high in Extraversion relative to others. A reasonably even level of measurement precision is extremely important for a number of reasons. Skew in measurement precision means that a scale might be more reliable when measuring variability at the low level of a trait relative to variability at the high level of the trait. This can lead to biased estimates of the trait depending on a person’s latent trait level. Such bias can also lead to inaccurate conclusions about the stability of the trait across time, as it might appear that people who are low in a trait change less in that trait over time, whereas people high in the trait may (spuriously) seem to change more in their trait level. Rather than reflecting genuine differential change, if measurement precision is uneven, this could simply be due to less reliable measures across time at a given trait
level and hence more variability in the
measure. This could make it look like
people have changed more at one trait
level relative to another.
So how does Item Response Theory
actually work? To model the precision of
a scale across the trait range, we need to
know about two distinct parameters of
each item. These are item difficulty and
item discrimination. Stated formally, the
logic behind a two-parameter logistic
item response model (2PLM; Birnbaum,
1968) can be summarized as follows:
(1.0) Pj
(θi
) = 1 / (1 + exp(-αj
(θi
- βj
)))
This equation states that the
probability that a given individual (j)
with a given level of trait θ will have
a level of that trait defined by one
aspect of the person (their true trait
level), and two aspects of the way it is
measured (or item parameters). These
two parameters are item difficulty (βj
)
and item discrimination (αj
). In this
model, trait levels can be thought of
as reflecting a standardized (z-scored)
range, with a Mean of 0 and Standard
Deviation of 1.
Item difficulty reflects the level of
the trait that a person would need to
have a 1 in 2 (50%) chance of scoring
in the positive direction on the item.
For example, a person with the sample
mean level of a trait (θ = 0), would have
a 50% chance of scoring in the positive
(high trait) direction on an item with a
difficulty value of 0. Similarly, a person
with a trait level one unit above the
mean (θ = 1), would have a 50% chance
of scoring in the positive (high trait)
direction on an item with a difficulty
value of 1.
What this means is that items that
have higher difficulty values tend to
be endorsed by fewer individuals (i.e.,
only those with higher levels of the
trait). The term difficulty in this context
arises from the fact that Item Response
Theory tended to be used originally
to model performance in educational
assessments, where only students with
a high latent academic ability would be
likely to get a positive (correct) score on
more difficult test items.
When examining ratings of Likert
items, Item Response Theory provides
a series of discrimination values in
sequence for the set of (ordered) possible
responses. That is, the lowest score, for
example 1 versus any other score from
2-7; a score of 1 or 2 versus any other
higher score from 3-7, and so on. With
a 7-point Likert scale, there are therefo
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Item Response Theory
Item Response Theory adalah umum
metode untuk memodelkan presisi
(atau keandalan) dari satu set item di
tingkat yang berbeda dari sifat laten. Untuk
contoh, di bidang pendidikan, sebuah 'mudah' test
mungkin andal membedakan 'sangat miskin'
siswa dari orang lain, tetapi kurang
dapat diandalkan dalam membedakan 'sangat baik'
siswa dari orang lain. Demikian pula,
ukuran Mini-IPIP6 dari Extraversion
mungkin lebih baik (yaitu, lebih tepat) di
membedakan antara orang-orang yang
rendah di Extraversion dari orang
lain, relatif terhadap seberapa akurat itu di
membedakan antara orang-orang yang tinggi di
Extraversion relatif terhadap orang lain.
A cukup bahkan tingkat
presisi pengukuran sangat
penting untuk sejumlah alasan. Condong
di presisi pengukuran berarti bahwa
skala mungkin akan lebih diandalkan ketika
mengukur variabilitas pada tingkat rendah
dari sifat relatif terhadap variabilitas pada
tingkat tinggi sifat tersebut. Hal ini dapat menyebabkan
perkiraan bias dari sifat tergantung
pada tingkat sifat laten seseorang. Bias seperti
juga dapat menyebabkan kesimpulan yang tidak akurat
tentang stabilitas sifat tersebut di
waktu, karena akan muncul bahwa orang yang
rendah di suatu sifat berubah lebih dalam bahwa sifat
dari waktu ke waktu, sedangkan orang-orang yang tinggi dalam
sifat mungkin (spuriously) tampaknya mengubah
lebih di tingkat sifat mereka. Daripada
mencerminkan perubahan diferensial asli,
jika presisi pengukuran tidak merata,
ini bisa hanya disebabkan kurang dapat diandalkan
langkah-langkah di waktu di suatu sifat tertentu
tingkat dan variabilitas karenanya lebih dalam
ukuran. Ini bisa membuatnya terlihat seperti
orang telah berubah lebih pada satu sifat
tingkat relatif terhadap yang lain.
Jadi bagaimana Teori Barang Response
benar-benar bekerja? Untuk model ketepatan
skala di berbagai sifat, kita perlu
tahu tentang dua parameter yang berbeda dari
setiap item. Ini adalah item yang kesulitan dan
diskriminasi item. Menyatakan secara resmi, yang
logika di balik dua parameter logistik
Model respon item (2PLM; Birnbaum,
1968) dapat disimpulkan sebagai berikut:
(1.0) Pj
(θi) = 1 / (1 ​​+ exp (-αj (θi - βj)) ) Persamaan ini menyatakan bahwa probabilitas bahwa individu tertentu (j) dengan tingkat tertentu θ sifat akan memiliki tingkat yang sifat didefinisikan oleh salah satu aspek dari orang (sifat sejati mereka tingkat), dan dua aspek cara itu diukur (atau parameter item). Ini dua parameter yang item yang kesulitan (βj) dan diskriminasi item (αj). Dalam Model, tingkat sifat dapat dianggap sebagai mencerminkan standar (z-mencetak) Kisaran, dengan mean 0 dan Standar Deviasi dari 1. Barang kesulitan mencerminkan tingkat sifat bahwa seseorang akan perlu memiliki 1 di 2 (50%) kesempatan mencetak gol ke arah positif pada item. Misalnya, orang dengan sampel berarti tingkat sifat (θ = 0), akan memiliki kesempatan 50% dari mencetak gol di positif (sifat tinggi) arah pada item dengan nilai kesulitan 0. Demikian pula, orang dengan tingkat sifat satu unit di atas rata-rata (θ = 1), akan memiliki kesempatan 50% dari mencetak gol di positif (sifat tinggi) arah pada item dengan kesulitan nilai 1. Apakah ini berarti bahwa item yang memiliki nilai kesulitan yang lebih tinggi cenderung akan didukung oleh individu yang lebih sedikit (yaitu, hanya mereka dengan tingkat yang lebih tinggi dari sifat). Kesulitan istilah dalam konteks ini muncul dari kenyataan bahwa Barang Response Theory cenderung digunakan awalnya untuk model kinerja dalam pendidikan penilaian, di mana hanya siswa dengan kemampuan akademik yang laten yang tinggi akan cenderung untuk mendapatkan positif (yang benar) skor pada tes yang lebih sulit item. Ketika memeriksa peringkat dari Likert item, Item Response Theory menyediakan serangkaian nilai-nilai diskriminasi dalam urutan untuk set (memerintahkan) mungkin tanggapan. Artinya, nilai terendah, untuk contoh 1 berbanding setiap nilai lain dari 2-7; skor 1 atau 2 vs lain skor yang lebih tinggi 3-7, dan sebagainya. Dengan skala Likert 7 poin, ada therefo





















































Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: