LiftLift always acts in a direction perpendicular to the relative wind terjemahan - LiftLift always acts in a direction perpendicular to the relative wind Bahasa Indonesia Bagaimana mengatakan

LiftLift always acts in a direction

Lift
Lift always acts in a direction perpendicular to the relative wind and to the lateral axis of the aircraft. The fact that lift is referenced to the wing, not to the Earth’s surface, is the source of many errors in learning flight control. Lift is not always “up.” Its direction relative to the Earth’s surface changes as the pilot maneuvers the aircraft.
The magnitude of the force of lift is directly proportional to the density of the air, the area of the wings, and the airspeed. It also depends upon the type of wing and the angle of attack. Lift increases with an increase in angle of attack up to the stalling angle, at which point it decreases with any further increase in angle of attack. In conventional aircraft, lift is therefore controlled by varying the angle of attack and speed.
Pitch/Power Relationship
An examination of Figure 2-7 illustrates the relationship between pitch and power while controlling flight path and airspeed. In order to maintain a constant lift, as airspeed is reduced, pitch must be increased. The pilot controls pitch through the elevators, which control the angle of attack. When back pressure is applied on the elevator control, the tail lowers and the nose rises, thus increasing the wing’s angle of attack and lift. Under most conditions the elevator is placing downward pressure on the tail. This pressure requires energy that is taken from aircraft performance (speed). Therefore, when the CG is closer to the aft portion of the aircraft the elevator downward forces are less. This results in less energy used for downward forces, in turn resulting in more energy applied to aircraft performance.

Thrust is controlled by using the throttle to establish or maintain desired airspeeds. The most precise method of controlling flight path is to use pitch control while simultaneously using power (thrust) to control airspeed. In order to maintain a constant lift, a change in pitch requires a change in power, and vice versa.
If the pilot wants the aircraft to accelerate while maintaining altitude, thrust must be increased to overcome drag. As the aircraft speeds up, lift is increased. To prevent gaining altitude, the pitch angle must be lowered to reduce the angle of attack and maintain altitude. To decelerate while maintaining altitude, thrust must be decreased to less than the value of drag. As the aircraft slows down, lift is reduced. To prevent losing altitude, the pitch angle must be increased in order to increase the angle of attack and maintain altitude.
Drag Curves
When induced drag and parasite drag are plotted on a graph, the total drag on the aircraft appears in the form of a “drag curve.” Graph A of Figure 2-8 shows a curve based on thrust versus drag, which is primarily used for jet aircraft. Graph B of Figure 2-8 is based on power versus drag, and it is used for propeller-driven aircraft. This chapter focuses on power versus drag charts for propeller-driven aircraft.

Understanding the drag curve can provide valuable insight into the various performance parameters and limitations of the aircraft. Because power must equal drag to maintain a steady airspeed, the curve can be either a drag curve or a power required curve. The power required curve represents the amount of power needed to overcome drag in order to maintain a steady speed in level flight.
The propellers used on most reciprocating engines achieve peak propeller efficiencies in the range of 80 to 88 percent. As airspeed increases, the propeller efficiency increases until it reaches its maximum. Any airspeed above this maximum point causes a reduction in propeller efficiency. An engine that produces 160 horsepower will have only about 80 percent of that power converted into available horsepower, approximately 128 horsepower. The remainder is lost energy. This is the reason the thrust and power available curves change with speed.
Regions of Command
The drag curve also illustrates the two regions of command: the region of normal command, and the region of reversed command. The term “region of command” refers to the relationship between speed and the power required to maintain or change that speed. “Command” refers to the input the pilot must give in terms of power or thrust to maintain a new speed once reached.
The “region of normal command” occurs where power must be added to increase speed. This region exists at speeds higher than the minimum drag point primarily as a result of parasite drag. The “region of reversed command” occurs where additional power is needed to maintain a slower airspeed. This region exists at speeds slower than the minimum drag point (L/DMAX on the thrust required curve, Figure 2-8) and is primarily due to induced drag. Figure 2-9 shows how one power setting can yield two speeds, points 1 and 2. This is because at point 1 there is high induced drag and low parasite drag, while at point 2 there is high parasite drag and low induced drag.

Control Characteristics
Most flying is conducted in the region of normal command: for example, cruise, climb, and maneuvers. The region of reversed command may be encountered in the slow-speed phases of flight during takeoff and landing; however, for most general aviation aircraft, this region is very small and is below normal approach speeds.
Flight in the region of normal command is characterized by a relatively strong tendency of the aircraft to maintain the trim speed. Flight in the region of reversed command is characterized by a relatively weak tendency of the aircraft to maintain the trim speed. In fact, it is likely the aircraft exhibits no inherent tendency to
maintain the trim speed in this area. For this reason, the pilot must give particular attention to precise control of airspeed when operating in the slow-speed phases of the region of reversed command.
Operation in the region of reversed command does not imply that great control difficulty and dangerous conditions exist. However, it does amplify errors of basic flying technique—making proper flying technique and precise control of the aircraft very important.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
LiftLift always acts in a direction perpendicular to the relative wind and to the lateral axis of the aircraft. The fact that lift is referenced to the wing, not to the Earth’s surface, is the source of many errors in learning flight control. Lift is not always “up.” Its direction relative to the Earth’s surface changes as the pilot maneuvers the aircraft.The magnitude of the force of lift is directly proportional to the density of the air, the area of the wings, and the airspeed. It also depends upon the type of wing and the angle of attack. Lift increases with an increase in angle of attack up to the stalling angle, at which point it decreases with any further increase in angle of attack. In conventional aircraft, lift is therefore controlled by varying the angle of attack and speed.Pitch/Power RelationshipAn examination of Figure 2-7 illustrates the relationship between pitch and power while controlling flight path and airspeed. In order to maintain a constant lift, as airspeed is reduced, pitch must be increased. The pilot controls pitch through the elevators, which control the angle of attack. When back pressure is applied on the elevator control, the tail lowers and the nose rises, thus increasing the wing’s angle of attack and lift. Under most conditions the elevator is placing downward pressure on the tail. This pressure requires energy that is taken from aircraft performance (speed). Therefore, when the CG is closer to the aft portion of the aircraft the elevator downward forces are less. This results in less energy used for downward forces, in turn resulting in more energy applied to aircraft performance.Thrust is controlled by using the throttle to establish or maintain desired airspeeds. The most precise method of controlling flight path is to use pitch control while simultaneously using power (thrust) to control airspeed. In order to maintain a constant lift, a change in pitch requires a change in power, and vice versa.If the pilot wants the aircraft to accelerate while maintaining altitude, thrust must be increased to overcome drag. As the aircraft speeds up, lift is increased. To prevent gaining altitude, the pitch angle must be lowered to reduce the angle of attack and maintain altitude. To decelerate while maintaining altitude, thrust must be decreased to less than the value of drag. As the aircraft slows down, lift is reduced. To prevent losing altitude, the pitch angle must be increased in order to increase the angle of attack and maintain altitude.Drag CurvesWhen induced drag and parasite drag are plotted on a graph, the total drag on the aircraft appears in the form of a “drag curve.” Graph A of Figure 2-8 shows a curve based on thrust versus drag, which is primarily used for jet aircraft. Graph B of Figure 2-8 is based on power versus drag, and it is used for propeller-driven aircraft. This chapter focuses on power versus drag charts for propeller-driven aircraft.Understanding the drag curve can provide valuable insight into the various performance parameters and limitations of the aircraft. Because power must equal drag to maintain a steady airspeed, the curve can be either a drag curve or a power required curve. The power required curve represents the amount of power needed to overcome drag in order to maintain a steady speed in level flight.The propellers used on most reciprocating engines achieve peak propeller efficiencies in the range of 80 to 88 percent. As airspeed increases, the propeller efficiency increases until it reaches its maximum. Any airspeed above this maximum point causes a reduction in propeller efficiency. An engine that produces 160 horsepower will have only about 80 percent of that power converted into available horsepower, approximately 128 horsepower. The remainder is lost energy. This is the reason the thrust and power available curves change with speed.Regions of Command
The drag curve also illustrates the two regions of command: the region of normal command, and the region of reversed command. The term “region of command” refers to the relationship between speed and the power required to maintain or change that speed. “Command” refers to the input the pilot must give in terms of power or thrust to maintain a new speed once reached.
The “region of normal command” occurs where power must be added to increase speed. This region exists at speeds higher than the minimum drag point primarily as a result of parasite drag. The “region of reversed command” occurs where additional power is needed to maintain a slower airspeed. This region exists at speeds slower than the minimum drag point (L/DMAX on the thrust required curve, Figure 2-8) and is primarily due to induced drag. Figure 2-9 shows how one power setting can yield two speeds, points 1 and 2. This is because at point 1 there is high induced drag and low parasite drag, while at point 2 there is high parasite drag and low induced drag.

Control Characteristics
Most flying is conducted in the region of normal command: for example, cruise, climb, and maneuvers. The region of reversed command may be encountered in the slow-speed phases of flight during takeoff and landing; however, for most general aviation aircraft, this region is very small and is below normal approach speeds.
Flight in the region of normal command is characterized by a relatively strong tendency of the aircraft to maintain the trim speed. Flight in the region of reversed command is characterized by a relatively weak tendency of the aircraft to maintain the trim speed. In fact, it is likely the aircraft exhibits no inherent tendency to
maintain the trim speed in this area. For this reason, the pilot must give particular attention to precise control of airspeed when operating in the slow-speed phases of the region of reversed command.
Operation in the region of reversed command does not imply that great control difficulty and dangerous conditions exist. However, it does amplify errors of basic flying technique—making proper flying technique and precise control of the aircraft very important.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Lift
Lift selalu bertindak dalam arah tegak lurus terhadap angin relatif dan sumbu lateral pesawat. Fakta bahwa lift dirujuk ke sayap, tidak ke permukaan bumi, adalah sumber dari banyak kesalahan dalam belajar kontrol penerbangan. Lift tidak selalu "up." Its arah relatif terhadap perubahan permukaan bumi sebagai manuver percontohan pesawat.
Besarnya kekuatan angkat berbanding lurus dengan densitas udara, daerah sayap, dan kecepatan pesawat. Hal ini juga tergantung pada jenis sayap dan angle of attack. Angkat meningkat dengan peningkatan sudut serangan sampai ke sudut mengulur-ulur, di mana titik itu menurun dengan peningkatan lebih lanjut di sudut serangan. Dalam pesawat konvensional, angkat karena itu dikendalikan oleh berbagai angle of attack dan kecepatan.
Pitch / Daya Hubungan
Pemeriksaan Gambar 2-7 menggambarkan hubungan antara lapangan dan kekuasaan sambil mengontrol jalur penerbangan dan kecepatan udara. Dalam rangka mempertahankan angkat konstan, seperti kecepatan udara berkurang, lapangan harus ditingkatkan. Kontrol percontohan lapangan melalui elevator, yang mengontrol sudut serangan. Ketika tekanan kembali diterapkan pada kontrol lift, ekor menurunkan dan hidung meningkat, sehingga meningkatkan sudut sayap serangan dan angkat. Dalam kondisi yang paling lift adalah menempatkan tekanan ke bawah pada ekor. Tekanan ini membutuhkan energi yang diambil dari kinerja pesawat (kecepatan). Oleh karena itu, ketika CG lebih dekat ke bagian belakang pesawat lift pasukan ke bawah kurang. Hal ini menghasilkan lebih sedikit energi yang digunakan untuk pasukan ke bawah, pada gilirannya menghasilkan lebih banyak energi diterapkan untuk kinerja pesawat. Thrust dikendalikan dengan menggunakan throttle untuk membangun atau mempertahankan kecepatan yang diinginkan. Metode yang paling tepat untuk mengontrol jalur penerbangan adalah dengan menggunakan kontrol lapangan sambil menggunakan daya (thrust) untuk mengontrol kecepatan udara. Dalam rangka mempertahankan lift konstan, perubahan lapangan membutuhkan perubahan dalam kekuasaan, dan sebaliknya. Jika pilot menginginkan pesawat untuk mempercepat sambil mempertahankan ketinggian, dorong harus ditingkatkan untuk mengatasi hambatan. Sebagai kecepatan pesawat up, angkat meningkat. Untuk mencegah mendapatkan ketinggian, sudut lapangan harus diturunkan untuk mengurangi angle of attack dan mempertahankan ketinggian. Untuk mengurangi kecepatan sambil mempertahankan ketinggian, dorong harus menurun menjadi kurang dari nilai drag. Sebagai pesawat melambat, angkat berkurang. Untuk mencegah kehilangan ketinggian, sudut lapangan harus ditingkatkan dalam rangka meningkatkan sudut serangan dan mempertahankan ketinggian. Tarik Curves Ketika induced drag dan parasite drag diplot pada grafik, total drag pada pesawat muncul dalam bentuk " kurva tarik. "Grafik A dari Gambar 2-8 menunjukkan kurva berdasarkan dorong dibandingkan drag, yang terutama digunakan untuk pesawat jet. Grafik B dari Gambar 2-8 didasarkan pada kekuatan terhadap tarik, dan digunakan untuk pesawat baling-driven. Bab ini berfokus pada kekuatan terhadap grafik tarik untuk pesawat baling-driven. Memahami kurva hambatan dapat memberikan pemahaman yang berharga tentang berbagai parameter kinerja dan keterbatasan pesawat. Karena daya tarik keharusan sama dengan mempertahankan kecepatan udara yang stabil, kurva dapat berupa kurva tarik atau kurva daya yang diperlukan. Daya yang diperlukan kurva merupakan jumlah daya yang dibutuhkan untuk mengatasi hambatan untuk mempertahankan kecepatan stabil di tingkat penerbangan. Baling-baling yang digunakan pada kebanyakan mesin reciprocating mencapai efisiensi propeller puncak di kisaran 80-88 persen. Seiring dengan peningkatan kecepatan udara, meningkat efisiensi propeller sampai mencapai maksimum. Setiap kecepatan udara di atas titik maksimum ini menyebabkan penurunan efisiensi propeller. Sebuah mesin yang menghasilkan 160 tenaga kuda akan memiliki hanya sekitar 80 persen dari kekuatan diubah menjadi tersedia tenaga kuda, sekitar 128 tenaga kuda. Sisanya hilang energi. Ini adalah alasan dorong dan daya kurva yang tersedia berubah dengan kecepatan. Daerah Komando Kurva tarik juga menggambarkan dua wilayah perintah: wilayah perintah normal, dan wilayah perintah terbalik. Istilah "wilayah perintah" mengacu pada hubungan antara kecepatan dan daya yang diperlukan untuk mempertahankan atau mengubah kecepatan itu. "Command" mengacu pada masukan pilot harus memberikan dalam hal kekuasaan atau dorong untuk mempertahankan kecepatan baru sekali tercapai. The "daerah perintah normal" terjadi di mana kekuasaan harus ditambahkan untuk meningkatkan kecepatan. Wilayah ini ada pada kecepatan lebih tinggi dari titik tarik minimum terutama sebagai akibat dari parasite drag. "Daerah komando terbalik" terjadi di mana kekuatan tambahan yang diperlukan untuk mempertahankan kecepatan udara lebih lambat. Wilayah ini ada pada kecepatan lebih lambat dari titik tarik minimum (L / DMAX di dorong diperlukan kurva, Gambar 2-8) dan terutama karena induced drag. Gambar 2-9 menunjukkan bagaimana satu pengaturan daya dapat menghasilkan dua kecepatan, poin 1 dan 2. Hal ini karena pada titik 1 ada induced drag tinggi dan parasite drag yang rendah, sementara pada titik 2 ada tarik parasit tinggi dan induced drag yang rendah. Kontrol Karakteristik Kebanyakan terbang dilakukan di wilayah perintah normal: misalnya, cruise, memanjat, dan manuver. Wilayah komando terbalik mungkin ditemui dalam fase lambat kecepatan pesawat saat lepas landas dan mendarat; Namun, untuk pesawat penerbangan paling umum, wilayah ini sangat kecil dan di bawah kecepatan pendekatan normal. Penerbangan di wilayah perintah normal ditandai dengan kecenderungan yang relatif kuat dari pesawat untuk mempertahankan kecepatan trim. Penerbangan di wilayah komando terbalik ditandai dengan kecenderungan yang relatif lemah dari pesawat untuk mempertahankan kecepatan trim. Bahkan, ada kemungkinan pesawat menunjukkan ada kecenderungan inheren untuk mempertahankan kecepatan langsing di daerah ini. Untuk alasan ini, pilot harus memberikan perhatian khusus untuk kontrol yang tepat dari kecepatan udara ketika beroperasi di fase lambat kecepatan wilayah perintah terbalik. Operasi di wilayah komando terbalik tidak berarti bahwa kontrol kesulitan besar dan kondisi berbahaya ada. Namun, itu tidak memperkuat kesalahan terbang teknik terbang dasar teknik pembuatan yang tepat dan kontrol yang tepat dari pesawat yang sangat penting.

















Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: