variables are predicted by latent and observed variables. Latent varia terjemahan - variables are predicted by latent and observed variables. Latent varia Bahasa Indonesia Bagaimana mengatakan

variables are predicted by latent a

variables are predicted by latent and observed variables. Latent variables, such as Particulate (PARTICUL), Collective (COLLECTI) and Understanding changes of state (UnChSt) are predicted by the three cognitive variables, LTH, FDI and CD. The effects of understanding the structure of matter on UnChSt are also shown.
Fig. 1 shows the MIMIC factor model. The value of CFI is 0.995; the goodness-of-fit w2 = 51.89, df = 39, p = 0.08; the Standardized Root Mean-square Residual SRMR is 0.029; the Root Mean-Square Error of Approximation RMSEA is 0.032; the Non-Normed Fit Index NNFI is 0.992 and the Adjusted Goodness of Fit Index AGFI is 0.95. They indicate an adequate model fit.
Path analysis. The observed indicators which synthesize Understanding changes of state (UnChSt) could be distinguished into two groups: one group includes items which emphasize understanding changes of state of matter and the other includes items which emphasize interpretations. Thus, two additional observed variables were calculated from the corresponding questions: CHANGE and INTERPRE respectively. Then, path analysis of students’ understanding changes of state (CHANGE) and their competence in interpretation of these changes (INTERPRE) was conducted to show the effects of Particulate (PARTICUL), Collective (COLLECTI), LTH, FDI and CD. Fig. 3 shows the Path model. The value of CFI is 1.00; the goodness-of-fit w2=2.23, df=39, p=0.33; the Standardized Root Mean-square Residual SRMR is 0.011; the Root Mean-Square Error of Approximation RMSEA is 0.018; the Non-Normed Fit Index NNFI is 0.998 and the Adjusted Goodness of Fit Index AGFI is 0.97. The above indicate an adequate model fit.
Interpretation of results and discussion
Structural equation modeling, a robust statistical analysis, provided a more analytical portrait of the relations among the observed and latent variables involved in learning sciences and contributed to our understanding about students’ knowledge on the matter under investigation. Moreover, it facilitates the theoretical interpretation and the establishment of relations between aspects of the cognitive skills that are behind the psychometric measurements and the nature of mental tasks involved when learning this specific domain material. The result supported most of the research hypotheses and specifically:
The confirmatory factor model supported the proposed dimensions of structure understanding (Johnson, 1998a; Tsitsipis et al., 2010), particulate and collective, and reveals the two latent variables that are behind students’ responses. The MIMIC model, which involves latent variables that are predicted by observed and latent variables, provided answers to the hypotheses 2, 3 and 4. It shows how the variables
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
variables are predicted by latent and observed variables. Latent variables, such as Particulate (PARTICUL), Collective (COLLECTI) and Understanding changes of state (UnChSt) are predicted by the three cognitive variables, LTH, FDI and CD. The effects of understanding the structure of matter on UnChSt are also shown.Fig. 1 shows the MIMIC factor model. The value of CFI is 0.995; the goodness-of-fit w2 = 51.89, df = 39, p = 0.08; the Standardized Root Mean-square Residual SRMR is 0.029; the Root Mean-Square Error of Approximation RMSEA is 0.032; the Non-Normed Fit Index NNFI is 0.992 and the Adjusted Goodness of Fit Index AGFI is 0.95. They indicate an adequate model fit.Path analysis. The observed indicators which synthesize Understanding changes of state (UnChSt) could be distinguished into two groups: one group includes items which emphasize understanding changes of state of matter and the other includes items which emphasize interpretations. Thus, two additional observed variables were calculated from the corresponding questions: CHANGE and INTERPRE respectively. Then, path analysis of students’ understanding changes of state (CHANGE) and their competence in interpretation of these changes (INTERPRE) was conducted to show the effects of Particulate (PARTICUL), Collective (COLLECTI), LTH, FDI and CD. Fig. 3 shows the Path model. The value of CFI is 1.00; the goodness-of-fit w2=2.23, df=39, p=0.33; the Standardized Root Mean-square Residual SRMR is 0.011; the Root Mean-Square Error of Approximation RMSEA is 0.018; the Non-Normed Fit Index NNFI is 0.998 and the Adjusted Goodness of Fit Index AGFI is 0.97. The above indicate an adequate model fit.Interpretation of results and discussionStructural equation modeling, a robust statistical analysis, provided a more analytical portrait of the relations among the observed and latent variables involved in learning sciences and contributed to our understanding about students’ knowledge on the matter under investigation. Moreover, it facilitates the theoretical interpretation and the establishment of relations between aspects of the cognitive skills that are behind the psychometric measurements and the nature of mental tasks involved when learning this specific domain material. The result supported most of the research hypotheses and specifically:The confirmatory factor model supported the proposed dimensions of structure understanding (Johnson, 1998a; Tsitsipis et al., 2010), particulate and collective, and reveals the two latent variables that are behind students’ responses. The MIMIC model, which involves latent variables that are predicted by observed and latent variables, provided answers to the hypotheses 2, 3 and 4. It shows how the variables
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
variabel diprediksi oleh variabel laten dan diamati. Variabel laten, seperti Particulate (Particul), Collective (collecti) dan perubahan Pemahaman negara (UnChSt) diprediksi oleh tiga variabel kognitif, LTH, FDI dan CD. Efek dari pemahaman struktur materi pada UnChSt juga ditampilkan.
Gambar. 1 menunjukkan model faktor MIMIC. Nilai CFI adalah 0,995; kebaikan-of-fit w2 = 51,89, df = 39, p = 0,08; yang SRMR Residual Standar Root Mean-square adalah 0,029; Kesalahan Root Mean-Square dari Aproksimasi RMSEA adalah 0,032; Indeks Fit Non-bernorma NNFI adalah 0,992 dan Goodness of Fit Index Disesuaikan AGFI 0.95. Mereka mengindikasikan memadai model fit.
Analisis Path. Indikator yang diamati yang mensintesis perubahan Pemahaman negara (UnChSt) dapat dibedakan menjadi dua kelompok: satu kelompok termasuk item yang menekankan perubahan pemahaman keadaan materi dan lainnya termasuk item yang menekankan interpretasi. Dengan demikian, dua variabel yang diamati tambahan dihitung dari pertanyaan yang sesuai: GANTI dan INTERPRE masing-masing. Kemudian, analisis jalur dari siswa perubahan pemahaman negara (GANTI) dan kompetensi mereka dalam interpretasi perubahan ini (INTERPRE) dilakukan untuk menunjukkan efek dari Partikulat (Particul), Collective (collecti), LTH, FDI dan CD. Gambar. 3 menunjukkan model Path. Nilai CFI adalah 1,00; kebaikan-of-fit w2 = 2.23, df = 39, p = 0,33; yang SRMR Residual Standar Root Mean-square adalah 0,011; Kesalahan Root Mean-Square dari Aproksimasi RMSEA adalah 0,018; Indeks Fit Non-bernorma NNFI adalah 0,998 dan Goodness of Fit Index Disesuaikan AGFI 0.97. Di atas menunjukkan model fit yang memadai.
Interpretasi hasil dan pembahasan
persamaan struktural pemodelan, analisis statistik yang kuat, memberikan potret yang lebih analitis hubungan antara variabel yang diamati dan laten yang terlibat dalam ilmu belajar dan berkontribusi terhadap pemahaman kita tentang pengetahuan siswa tentang masalah dalam penyelidikan. Selain itu, memfasilitasi interpretasi teoritis dan pembentukan hubungan antara aspek keterampilan kognitif yang berada di belakang pengukuran psikometri dan sifat tugas mental yang terlibat ketika belajar materi domain tertentu. Hasilnya didukung sebagian besar hipotesis penelitian dan khusus:
Model faktor konfirmatori didukung dimensi yang diusulkan pemahaman struktur (. Johnson, 1998a; Tsitsipis et al, 2010), partikulat dan kolektif, dan mengungkapkan dua variabel laten yang berada di belakang siswa tanggapan. The MIMIC model, yang melibatkan variabel laten yang diprediksi oleh variabel yang diamati dan laten, disediakan jawaban hipotesis 2, 3 dan 4. Ini menunjukkan bagaimana variabel
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: