10.5.5.2 RetrogradationThe changes in properties of a starch gel with  terjemahan - 10.5.5.2 RetrogradationThe changes in properties of a starch gel with  Bahasa Indonesia Bagaimana mengatakan

10.5.5.2 RetrogradationThe changes

10.5.5.2 Retrogradation
The changes in properties of a starch gel with time, known as retrogradation,
have been discussed in a previous section. Some of these changes occur during
the cooling curve in the viscogram (i.e., the retrogradation due to the amylose).
During the storage of a starch gel, the rigidity continues to increase with time.
This increase is reversible to some extent, as the part related to the crystallization of amylopectin can be reversed by heating. As was the case with
rheological properties obtained during gelatinization of starch, the retrogradation can also be influenced, both by the choice of starch and by the preparation
procedure, although this approach has been investigated to a much lesser
extent. Most of the information available is related to the staling of bread.
10.5.5.2.1 Starch Source and Concentration
After a week of storage (20°C), the shear modulus has been found to differ
between starches in the following way: wheat < potato < maize < pea [167].
The rate of development of the shear modulus depends on the starch source
and was found to increase in the following order for different amylopectins:
wheat < barley < maize < canna = potato < pea [173]. For different starch
gels (40% starch) stored at 20°C, the compression modulus (E) after 10 days
increased in the following order: waxy rice < wheat < manioc < rice < pea <
potato [204]. The change in Gwith time depends on concentration, and Gis
always higher at higher concentrations [167,204]. Moreover, at low concentrations, a plateau value was found after a short time, whereas for maize starch
gels at concentrations of 30 and 40% Gwas found to continue to increase
even after several days.
10.5.5.2.2 Heating Rate and Temperature
For bread baked in a resistance oven (i.e., without the formation of crust), the
firmness was higher for longer heating times [136]. The development of
rigidity of a starch gel proceeds faster at lower temperatures, with the following
ranking being found for wheat starches: 10°C > 15°C > 20°C > 30°C [148].
10.5.5.3 Freeze–Thaw Stability
For a starch gel that is frozen and eventually thawed, the rheological properties
usually differ from the corresponding gel that has not been frozen. A very
obvious effect of freezing and thawing is syneresis and the liquid-phase exudates present after thawing. The most important factor for determining the
properties of a starch gel after freezing and thawing is the freezing rate (i.e.,
the size of the ice crystals formed). Certainly the conditions during thawing
are also important, but the thawing rate is much more difficult to control. As
discussed in the following text, the source of starch, the concentration, and
the sample preparation procedure all exert an influence as well.
© 2006 by Taylor & Francis Group, LLC
Starch: Physicochemical and Functional Aspects 433
One method to characterize freeze–thaw stability is to measure the extent
of syneresis [205,206]; however, the result is very much related to the experimental conditions (e.g., the centrifugal forces) [207]. As an alternative procedure for evaluating freeze–thaw stability, a rheological method has been
developed [207] in which the starch gels are transferred to a rheometer after
freezing and thawing, and small-amplitude oscillation experiments can be
carried out at a fixed frequency during both heating and cooling. Together
with the determination of freeze–thaw stability with respect to syneresis, some
insights into the mechanisms can be obtained. No changes in G* with temperature and only a slight decrease in δwere found when hydroxypropyl potato
starch gels were heated before freezing [207]. For freeze–thawed starch gels,
it was found that G* increased with the number of freeze–thaw cycles until a
plateau value was reached; at the same time, δdecreased. The freezing and
thawing thus transformed the gel into a more elastic one, with an increased
strength. Initially, when G* increased and δdecreased, a more perfect network
was created; however, with each increasing freeze-thaw cycle, δincreased and
G* was constant or decreased. This finding could be the result of disruptions
in the network due to large ice crystals. When the gels were heated, G* began
to decrease and δincreased. A peak value in G* and a minimum in δ were
observed at the same freeze–thaw cycle as when syneresis was detected. This
was suggested to be the effect of two processes: swelling of aggregated starch
molecules (presumably amylopectin as well as amylose) and melting or dissolution (presumably amylopectin) of aggregated or crystallized molecules.
10.5.5.3.1 Starch Source and Concentration
Native starches show very poor freeze–thaw stability, and chemical modifications such as acetylation or hydroxypropylation are used to improve freeze–
thaw stability [205–207]. Combinations of acetylation with crosslinking did
not much improve the freeze–thaw stability, whereas a combination of crosslinking with hydroxypropylation had a detrimental effect [208]. Among the
native starches, oat starch has been reported to show less syneresis than wheat
starch [112]. A rather poor freeze–thaw stability was observed for pigeon pea
starch — 30 to 50% syneresis, depending on the number of freeze–thaw cycles
[113]. The freeze–thaw stability was improved, however, with defatting and
even more so with heat–moisture treatment (30% water, 100°C, 16 hr). Defatting has also been found to improve the freeze–thaw stability for oat starch
[112]. The rheological changes of starch pastes after freeze–thaw treatment
depend strongly on concentration [209], and the rheological response connected with syneresis is delayed with regard to the number of freeze–thaw
cycles when the concentration is increased.
10.5.5.3.2 Preparation Procedure
The influence of preparation procedure was studied by a viscograph [209].
Starch pastes (hyroxypropylated potato starch) were prepared by heating to
© 2006 by Taylor & Francis Group, LLC
434 Carbohydrates in Food
(1) peak viscosity, (2) half-breakdown, (3) 95°C for 15 minutes, or (4) the
total cycle. The G* after preparation and at room temperature was highest for
the paste prepared to peak viscosity and lowest for the paste that had gone
through the total cycle. The δvalues were the opposite. The rheological
changes typical for freeze–thaw damage developed first in the paste that had
been prepared at peak viscosity (after only one freeze–thaw cycle), then for
the half-breakdown paste (two freeze–thaw cycles), holding period (six
cycles), and total treatment (six cycles). This result indicates that complete
swelling and leaking must occur during gelatinization; otherwise, these will
occur during freeze–thaw treatment. Fragmentation of granules and their
breakdown during the latter part of the viscogram should also occur; otherwise,
these effects will be obtained during freezing due to ice-crystal growth.
10.6 MODIFICATION OF STARCH PROPERTIES
The behavior of starch described so far in this chapter can be modified in
different ways. Modifications might occur because starch interacts with other
components present in the food. The result might be detrimental for the quality
or it might be necessary for obtaining the familiar structure of the food in
question. In many applications, the properties of the native starch may not be
the most appropriate, and then another source of starch might be used. An
example is the use of certain genotypes with either an increased level of amylose
(high-amylose varieties) or an increased level of amylopectin (waxy varieties).
With increased knowledge about the biosynthesis of starch, new genotypes can
be produced using modern gene techniques. Also, when the native starch does
not have the desired characteristics, chemically modified starch is often used.
In this section, these various types of modifications are described.
10.6.1 INTERACTION WITHOTHERCOMPONENTS
In most applications of starch, other components are present, in addition to
starch and water, and these other components have an effect on the starch
behavior and starch properties. The effects observed may have different origins
and can be due to soluble low-molecular-weight components (sugar, salt, acids)
or to the presence of macromolecules, such as proteins and other polysaccharides. A special case is the interaction between starch and lipids because of
the amylose–lipid complex. Recently, the formation of an amylopectin-lipid
complex has also been verified in surface tension measurements, and by
isothermal titration calorimetry [209a,b].
10.6.1.1 pH
The starch molecules themselves are uncharged in most starches. One exception is potato starch, which contains phosphate esters. It should therefore be
expected that the pH (as well as ions) should influence the behavior of starch
© 2006 by Taylor & Francis Group, LLC
Starch: Physicochemical and Functional Aspects 435
only marginally, except in the case of potato starch. The gel strength (measured
as G*) of potato starch gels depends very much on pH and will be at a
maximum at neutral pH values [210]. The phase angle has been shown to have
a minimum at corresponding pH values. Other starches, such as tapioca, do
not show this pH dependence for gel properties.
Retrogradation of wheat starch, as measured by DSC, is at a maximum at
pH 5.6 and is lower at the pH values of 4.4, 7.8, or 9.4 [211]. The elastic
modulus, on the other hand, has been shown to be lowest at pH 5.6 and highest
at pH 9.4; however, the differences were small.
Extremely low pH values cause hydrolysis of starch and can be utilized
as a method for the preparation of modified starch. The amorphous parts of
the starch granules will be the first to be attacked, and the remaining crystalline
parts are hydrolyzed at a much slower rate [212]. Extremely high pH values,
on the other hand, cause cold gelatinization of starch. The starch granules
swell at room temperature and amylose is solubilized in the presence of
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
10.5.5.2 RetrogradationThe changes in properties of a starch gel with time, known as retrogradation,have been discussed in a previous section. Some of these changes occur duringthe cooling curve in the viscogram (i.e., the retrogradation due to the amylose).During the storage of a starch gel, the rigidity continues to increase with time.This increase is reversible to some extent, as the part related to the crystallization of amylopectin can be reversed by heating. As was the case withrheological properties obtained during gelatinization of starch, the retrogradation can also be influenced, both by the choice of starch and by the preparationprocedure, although this approach has been investigated to a much lesserextent. Most of the information available is related to the staling of bread.10.5.5.2.1 Starch Source and ConcentrationAfter a week of storage (20°C), the shear modulus has been found to differbetween starches in the following way: wheat < potato < maize < pea [167].The rate of development of the shear modulus depends on the starch sourceand was found to increase in the following order for different amylopectins:wheat < barley < maize < canna = potato < pea [173]. For different starchgels (40% starch) stored at 20°C, the compression modulus (E) after 10 daysincreased in the following order: waxy rice < wheat < manioc < rice < pea <potato [204]. The change in Gwith time depends on concentration, and Gisalways higher at higher concentrations [167,204]. Moreover, at low concentrations, a plateau value was found after a short time, whereas for maize starchgels at concentrations of 30 and 40% Gwas found to continue to increaseeven after several days.10.5.5.2.2 Heating Rate and TemperatureFor bread baked in a resistance oven (i.e., without the formation of crust), thefirmness was higher for longer heating times [136]. The development ofrigidity of a starch gel proceeds faster at lower temperatures, with the followingranking being found for wheat starches: 10°C > 15°C > 20°C > 30°C [148].10.5.5.3 Freeze–Thaw StabilityFor a starch gel that is frozen and eventually thawed, the rheological propertiesusually differ from the corresponding gel that has not been frozen. A veryobvious effect of freezing and thawing is syneresis and the liquid-phase exudates present after thawing. The most important factor for determining theproperties of a starch gel after freezing and thawing is the freezing rate (i.e.,the size of the ice crystals formed). Certainly the conditions during thawingare also important, but the thawing rate is much more difficult to control. Asdiscussed in the following text, the source of starch, the concentration, andthe sample preparation procedure all exert an influence as well.© 2006 by Taylor & Francis Group, LLCStarch: Physicochemical and Functional Aspects 433One method to characterize freeze–thaw stability is to measure the extentof syneresis [205,206]; however, the result is very much related to the experimental conditions (e.g., the centrifugal forces) [207]. As an alternative procedure for evaluating freeze–thaw stability, a rheological method has beendeveloped [207] in which the starch gels are transferred to a rheometer afterfreezing and thawing, and small-amplitude oscillation experiments can becarried out at a fixed frequency during both heating and cooling. Togetherwith the determination of freeze–thaw stability with respect to syneresis, someinsights into the mechanisms can be obtained. No changes in G* with temperature and only a slight decrease in δwere found when hydroxypropyl potatostarch gels were heated before freezing [207]. For freeze–thawed starch gels,it was found that G* increased with the number of freeze–thaw cycles until aplateau value was reached; at the same time, δdecreased. The freezing andthawing thus transformed the gel into a more elastic one, with an increasedstrength. Initially, when G* increased and δdecreased, a more perfect networkwas created; however, with each increasing freeze-thaw cycle, δincreased andG* was constant or decreased. This finding could be the result of disruptionsin the network due to large ice crystals. When the gels were heated, G* beganto decrease and δincreased. A peak value in G* and a minimum in δ wereobserved at the same freeze–thaw cycle as when syneresis was detected. Thiswas suggested to be the effect of two processes: swelling of aggregated starchmolecules (presumably amylopectin as well as amylose) and melting or dissolution (presumably amylopectin) of aggregated or crystallized molecules.10.5.5.3.1 Starch Source and ConcentrationNative starches show very poor freeze–thaw stability, and chemical modifications such as acetylation or hydroxypropylation are used to improve freeze–thaw stability [205–207]. Combinations of acetylation with crosslinking didnot much improve the freeze–thaw stability, whereas a combination of crosslinking with hydroxypropylation had a detrimental effect [208]. Among thenative starches, oat starch has been reported to show less syneresis than wheatstarch [112]. A rather poor freeze–thaw stability was observed for pigeon peastarch — 30 to 50% syneresis, depending on the number of freeze–thaw cycles[113]. The freeze–thaw stability was improved, however, with defatting andeven more so with heat–moisture treatment (30% water, 100°C, 16 hr). Defatting has also been found to improve the freeze–thaw stability for oat starch[112]. The rheological changes of starch pastes after freeze–thaw treatmentdepend strongly on concentration [209], and the rheological response connected with syneresis is delayed with regard to the number of freeze–thawcycles when the concentration is increased.10.5.5.3.2 Preparation ProcedureThe influence of preparation procedure was studied by a viscograph [209].Starch pastes (hyroxypropylated potato starch) were prepared by heating to© 2006 by Taylor & Francis Group, LLC434 Carbohydrates in Food(1) peak viscosity, (2) half-breakdown, (3) 95°C for 15 minutes, or (4) thetotal cycle. The G* after preparation and at room temperature was highest forthe paste prepared to peak viscosity and lowest for the paste that had gonethrough the total cycle. The δvalues were the opposite. The rheologicalchanges typical for freeze–thaw damage developed first in the paste that hadbeen prepared at peak viscosity (after only one freeze–thaw cycle), then forthe half-breakdown paste (two freeze–thaw cycles), holding period (sixcycles), and total treatment (six cycles). This result indicates that completeswelling and leaking must occur during gelatinization; otherwise, these willoccur during freeze–thaw treatment. Fragmentation of granules and theirbreakdown during the latter part of the viscogram should also occur; otherwise,these effects will be obtained during freezing due to ice-crystal growth.10.6 MODIFICATION OF STARCH PROPERTIESThe behavior of starch described so far in this chapter can be modified indifferent ways. Modifications might occur because starch interacts with othercomponents present in the food. The result might be detrimental for the qualityor it might be necessary for obtaining the familiar structure of the food inquestion. In many applications, the properties of the native starch may not bethe most appropriate, and then another source of starch might be used. Anexample is the use of certain genotypes with either an increased level of amylose(high-amylose varieties) or an increased level of amylopectin (waxy varieties).With increased knowledge about the biosynthesis of starch, new genotypes canbe produced using modern gene techniques. Also, when the native starch doesnot have the desired characteristics, chemically modified starch is often used.In this section, these various types of modifications are described.10.6.1 INTERACTION WITHOTHERCOMPONENTSIn most applications of starch, other components are present, in addition tostarch and water, and these other components have an effect on the starchbehavior and starch properties. The effects observed may have different originsand can be due to soluble low-molecular-weight components (sugar, salt, acids)or to the presence of macromolecules, such as proteins and other polysaccharides. A special case is the interaction between starch and lipids because ofthe amylose–lipid complex. Recently, the formation of an amylopectin-lipidcomplex has also been verified in surface tension measurements, and byisothermal titration calorimetry [209a,b].10.6.1.1 pHThe starch molecules themselves are uncharged in most starches. One exception is potato starch, which contains phosphate esters. It should therefore beexpected that the pH (as well as ions) should influence the behavior of starch© 2006 by Taylor & Francis Group, LLCStarch: Physicochemical and Functional Aspects 435only marginally, except in the case of potato starch. The gel strength (measuredas G*) of potato starch gels depends very much on pH and will be at amaximum at neutral pH values [210]. The phase angle has been shown to havea minimum at corresponding pH values. Other starches, such as tapioca, donot show this pH dependence for gel properties.Retrogradation of wheat starch, as measured by DSC, is at a maximum atpH 5.6 and is lower at the pH values of 4.4, 7.8, or 9.4 [211]. The elasticmodulus, on the other hand, has been shown to be lowest at pH 5.6 and highestat pH 9.4; however, the differences were small.Extremely low pH values cause hydrolysis of starch and can be utilizedas a method for the preparation of modified starch. The amorphous parts ofthe starch granules will be the first to be attacked, and the remaining crystallineparts are hydrolyzed at a much slower rate [212]. Extremely high pH values,on the other hand, cause cold gelatinization of starch. The starch granulesswell at room temperature and amylose is solubilized in the presence of
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
10.5.5.2 retrogradasi
Perubahan sifat gel pati dengan waktu, yang dikenal sebagai retrogradasi,
telah dibahas dalam bagian sebelumnya. Beberapa perubahan ini terjadi selama
kurva pendinginan di viscogram (yaitu, para retrogradasi karena amilosa yang).
Selama penyimpanan gel pati, kekakuan terus meningkat dengan waktu.
Peningkatan ini reversibel sampai batas tertentu, sebagai bagian terkait dengan kristalisasi amilopektin dapat dibalik dengan pemanasan. Seperti halnya dengan
sifat reologi yang diperoleh selama gelatinisasi pati, retrogradasi juga dapat dipengaruhi, baik oleh pilihan pati dan dengan persiapan
prosedur, meskipun pendekatan ini telah diteliti untuk jauh lebih rendah
tingkat. . Sebagian besar informasi yang tersedia berkaitan dengan staling roti
10.5.5.2.1 Pati Sumber dan Konsentrasi
Setelah seminggu penyimpanan (20 ° C), modulus geser telah ditemukan berbeda
antara pati dengan cara berikut: gandum < . kentang <jagung <kacang [167]
Tingkat perkembangan modulus geser tergantung pada sumber pati
dan ditemukan meningkatkan dengan urutan sebagai berikut untuk amylopectins berbeda:
gandum <barley <jagung <ganyong = kentang <kacang [173]. Untuk berbeda pati
gel (40% pati) disimpan pada 20 ° C, modulus kompresi (E) setelah 10 hari
meningkat dengan urutan sebagai berikut: beras lilin <gandum <ubi kayu <beras <pea <
kentang [204]. Perubahan waktu gwith tergantung pada konsentrasi, dan Gis
selalu lebih tinggi pada konsentrasi yang lebih tinggi [167204]. Selain itu, pada konsentrasi rendah, nilai dataran tinggi ditemukan setelah waktu yang singkat, sedangkan untuk tepung jagung
gel pada konsentrasi 30 dan 40% GWAS ditemukan terus meningkat
bahkan setelah beberapa hari.
10.5.5.2.2 Pemanasan Rate dan Suhu
Untuk roti panggang dalam oven resistensi (yaitu, tanpa pembentukan kerak), yang
ketegasan lebih tinggi untuk waktu pemanasan lebih lama [136]. Perkembangan
kekakuan dari pati hasil gel lebih cepat pada suhu yang lebih rendah, dengan berikut
ranking yang ditemukan untuk pati gandum:. 10 ° C> 15 ° C> 20 ° C> 30 ° C [148]
10.5.5.3 Freeze-Thaw Stabilitas
Untuk gel pati yang beku dan akhirnya dicairkan, sifat reologi
biasanya berbeda dari gel sesuai yang belum dibekukan. Sangat
efek yang jelas dari pembekuan dan pencairan adalah sineresis dan eksudat-fase cair hadir setelah pencairan. Faktor yang paling penting untuk menentukan
sifat-sifat gel pati setelah pembekuan dan pencairan adalah tingkat pembekuan (yaitu,
ukuran kristal es yang terbentuk). Tentu saja kondisi selama thawing
juga penting, tetapi tingkat pencairan jauh lebih sulit untuk mengontrol. Seperti
dibahas dalam teks berikut, sumber pati, konsentrasi, dan
prosedur persiapan sampel semua memberikan pengaruh juga.
© 2006 oleh Taylor & Francis Group, LLC
Pati: fisiko dan Aspek Fungsional 433
Salah satu metode untuk mengkarakterisasi beku-mencair stabilitas adalah untuk mengukur sejauh mana
dari sineresis [205206]; Namun, hasilnya sangat berhubungan dengan kondisi eksperimental (misalnya, kekuatan sentrifugal) [207]. Sebagai prosedur alternatif untuk mengevaluasi stabilitas beku-mencair, metode rheologi telah
dikembangkan [207] di mana gel pati akan ditransfer ke Rheometer setelah
pembekuan dan pencairan, dan percobaan osilasi amplitudo kecil dapat
dilakukan pada frekuensi tetap selama baik pemanasan dan pendinginan. Bersama
dengan penentuan stabilitas beku-mencair sehubungan dengan sineresis, beberapa
wawasan ke dalam mekanisme dapat diperoleh. Tidak ada perubahan di G * dengan suhu dan hanya sedikit penurunan δwere ditemukan ketika kentang hidroksipropil
pati gel dipanaskan sebelum membeku [207]. Untuk beku-dicairkan pati gel,
ditemukan bahwa G * meningkat dengan jumlah siklus beku-mencair sampai
nilai dataran tinggi tercapai; pada saat yang sama, δdecreased. Pembekuan dan
pencairan sehingga mengubah gel menjadi satu lebih elastis, dengan peningkatan
kekuatan. Awalnya, ketika G * meningkat dan δdecreased, jaringan lebih sempurna
diciptakan; Namun, dengan masing-masing meningkat siklus beku-mencair, δincreased dan
G * adalah konstan atau menurun. Temuan ini bisa menjadi hasil dari gangguan
dalam jaringan karena kristal es besar. Ketika gel dipanaskan, G * mulai
menurun dan δincreased. Sebuah nilai puncak di G * dan minimum di δ yang
diamati pada saat yang sama siklus beku-mencair seperti ketika sineresis terdeteksi. Hal ini
disarankan untuk menjadi efek dari dua proses: pembengkakan pati dikumpulkan
. molekul (mungkin amilopektin serta amilosa) dan mencair atau pembubaran (mungkin amilopektin) molekul agregat atau mengkristal
10.5.5.3.1 Pati Sumber dan Konsentrasi
pati asli menunjukkan sangat miskin stabilitas beku-mencair, dan modifikasi kimia seperti asetilasi atau hydroxypropylation digunakan untuk meningkatkan freeze-
stabilitas mencair [205-207]. Kombinasi asetilasi dengan silang tidak
tidak banyak meningkatkan stabilitas beku-mencair, sedangkan kombinasi silang dengan hydroxypropylation memiliki efek yang merugikan [208]. Di antara
pati asli, pati gandum telah dilaporkan untuk menunjukkan sineresis kurang dari gandum
pati [112]. Sebuah stabilitas beku-mencair agak miskin diamati untuk merpati kacang
pati - 30 sampai 50% sineresis, tergantung pada jumlah siklus beku-mencair
[113]. Stabilitas beku-mencair diperbaiki, namun, dengan defatting dan
bahkan lebih dengan perlakuan panas-kelembaban (30% air, 100 ° C, 16 jam). Defatting juga telah ditemukan untuk meningkatkan stabilitas beku-mencair untuk pati gandum
[112]. Perubahan rheologi pasta pati setelah pengobatan beku-mencair
sangat bergantung pada konsentrasi [209], dan respon rheologi terhubung dengan sineresis tertunda sehubungan dengan jumlah beku-mencair
siklus ketika konsentrasi meningkat.
10.5.5.3.2 Persiapan Prosedur
Pengaruh prosedur persiapan dipelajari oleh viscograph [209].
Pati pasta (hyroxypropylated tepung kentang) disusun oleh pemanasan untuk
© 2006 oleh Taylor & Francis Group, LLC
434 Karbohidrat dalam makanan
(1), viskositas puncak, (2) setengah -breakdown, (3) 95 ° C selama 15 menit, atau (4)
siklus keseluruhan. G * setelah persiapan dan pada suhu kamar tertinggi untuk
pasta siap untuk viskositas puncak dan termurah untuk pasta yang telah pergi
melalui siklus keseluruhan. The δvalues ​​yang sebaliknya. The rheologi
perubahan khas untuk kerusakan beku-mencair dikembangkan pertama di pasta yang
telah disiapkan di puncak viskositas (setelah siklus hanya satu beku-mencair), maka untuk
pasta setengah breakdown (dua siklus beku-mencair), holding period (enam
siklus), dan pengobatan Total (enam siklus). Hasil ini menunjukkan bahwa lengkap
pembengkakan dan kebocoran harus terjadi selama gelatinisasi; jika tidak, ini akan
terjadi selama pengobatan beku-mencair. Fragmentasi butiran dan mereka
kerusakan selama bagian akhir dari viscogram juga harus terjadi; jika tidak,
efek ini akan diperoleh selama pembekuan karena pertumbuhan es kristal.
10,6 MODIFIKASI SIFAT PATI
Perilaku pati dijelaskan sejauh ini dalam bab ini dapat dimodifikasi dalam
cara yang berbeda. Modifikasi mungkin terjadi karena pati berinteraksi dengan lainnya
komponen hadir dalam makanan. Hasilnya mungkin merugikan bagi kualitas
atau mungkin perlu untuk memperoleh struktur akrab makanan di
pertanyaan. Dalam banyak aplikasi, sifat-sifat pati asli mungkin tidak
yang paling tepat, dan kemudian sumber lain pati dapat digunakan. Sebuah
contoh adalah penggunaan genotipe tertentu dengan baik peningkatan tingkat amilosa
(varietas tinggi amilosa) atau peningkatan tingkat amilopektin (varietas lilin).
Dengan peningkatan pengetahuan tentang biosintesis pati, genotipe baru dapat
diproduksi menggunakan teknik gen yang modern . Juga, ketika pati asli tidak
tidak memiliki karakteristik yang diinginkan, pati yang dimodifikasi secara kimia sering digunakan.
Pada bagian ini, berbagai jenis modifikasi dijelaskan.
10.6.1 WITHOTHERCOMPONENTS INTERAKSI
Dalam sebagian besar aplikasi pati, komponen lain yang hadir, selain untuk
pati dan air, dan komponen-komponen lainnya memiliki efek pada pati
perilaku dan sifat pati. Efek yang diamati mungkin memiliki asal-usul yang berbeda
dan dapat disebabkan oleh larut komponen molekul rendah-berat (gula, garam, asam)
atau adanya makromolekul, seperti protein dan polisakarida lainnya. Sebuah kasus khusus adalah interaksi antara pati dan lipid karena
kompleks amilosa-lipid. Baru-baru ini, pembentukan amilopektin-lipid
kompleks juga telah diverifikasi dalam pengukuran tegangan permukaan, dan dengan
isotermal titrasi kalorimetri [209A, b].
10.6.1.1 pH
Molekul-molekul pati sendiri bermuatan di sebagian besar pati. Satu pengecualian adalah tepung kentang, yang berisi ester fosfat. Karena itu, harus
diharapkan bahwa pH (serta ion) harus mempengaruhi perilaku pati
© 2006 oleh Taylor & Francis Group, LLC
Pati: fisiko dan Aspek Fungsional 435
hanya sedikit, kecuali dalam kasus tepung kentang. Kekuatan gel (diukur
sebagai G *) tepung kentang gel sangat tergantung pada pH dan akan berada pada
maksimum pada pH netral [210]. Sudut fase telah terbukti memiliki
minimal di sesuai nilai pH. Pati lainnya, seperti tapioka, jangan
tidak menunjukkan ini ketergantungan pH untuk properti gel.
retrogradasi pati gandum, yang diukur dengan DSC, adalah sebesar maksimal di
pH 5,6 dan lebih rendah pada nilai pH 4,4, 7,8, atau 9,4 [211 ]. Elastis
modulus, di sisi lain, telah terbukti terendah pada pH 5,6 dan tertinggi
pada pH 9,4; Namun, perbedaan yang kecil.
nilai pH sangat rendah menyebabkan hidrolisis pati dan dapat dimanfaatkan
sebagai metode untuk pembuatan pati diubah. Bagian amorf
butiran pati akan menjadi yang pertama diserang, dan kristal yang tersisa
bagian yang dihidrolisis pada tingkat yang jauh lebih lambat [212]. Sangat nilai pH yang tinggi,
di sisi lain, menyebabkan gelatinisasi dingin pati. Butiran-butiran pati
membengkak pada suhu kamar dan amilosa yang dilarutkan dengan adanya
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: