With the advances in critical radar technologies of wideband waveform  terjemahan - With the advances in critical radar technologies of wideband waveform  Bahasa Indonesia Bagaimana mengatakan

With the advances in critical radar

With the advances in critical radar technologies of wideband waveform generation and
digital image formation, the community could start the task of understanding the capabilities
and limitations of FOPEN SAR. Microwave SAR systems were just beginning
to gain acceptance in the surveillance community, which had relied on high-resolution
pictures for decades. Figure 14-5 presents the motivation for FOPEN SAR needs and an
advanced look at what it provides the operational user – whether a military or commercial
customer of the image products [9]. All four panes in the figure are of the same
scene – a forested region with several vehicles parked under the foliage and in the tree
lines – but collected with different imaging technologies. On the left is a moderate to
high-resolution optical picture, but the vehicles cannot be observed until the sensor is
nadir looking. The next image to the right is a typical 1-meter resolution X-band image
of the scene taken on the same day. Sporadic detections were obtained, but only when
the glint of targets could be captured in the image. Neither of these two image products
would satisfy the user, especially when high area coverage rate is needed.
The next two SAR images, which are within UHF (235–445 MHz) and VHF (20–
88 MHz), show a more optimistic ability to detect the fixed targets. The UHF panel
shows images of many of the manmade targets, but high false alarms caused by the
foliage clutter in the scene. The detection at VHF is higher where the foliage attenuation
is significantly lower, and the target cross sections are larger than the clutter. However,
these lower frequencies provide limited resolution (i.e., pixels on target) to characterize
the objects in the image.
This realization of reliable imaging capabilities for FOPEN SAR was important.
It started a five-year campaign to re-characterize the foliage clutter so better SAR system
engineering could be designed. It was also realized at that time that a better
understanding of the foliage scattering phenomenology would derive civilian uses for
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
With the advances in critical radar technologies of wideband waveform generation and
digital image formation, the community could start the task of understanding the capabilities
and limitations of FOPEN SAR. Microwave SAR systems were just beginning
to gain acceptance in the surveillance community, which had relied on high-resolution
pictures for decades. Figure 14-5 presents the motivation for FOPEN SAR needs and an
advanced look at what it provides the operational user – whether a military or commercial
customer of the image products [9]. All four panes in the figure are of the same
scene – a forested region with several vehicles parked under the foliage and in the tree
lines – but collected with different imaging technologies. On the left is a moderate to
high-resolution optical picture, but the vehicles cannot be observed until the sensor is
nadir looking. The next image to the right is a typical 1-meter resolution X-band image
of the scene taken on the same day. Sporadic detections were obtained, but only when
the glint of targets could be captured in the image. Neither of these two image products
would satisfy the user, especially when high area coverage rate is needed.
The next two SAR images, which are within UHF (235–445 MHz) and VHF (20–
88 MHz), show a more optimistic ability to detect the fixed targets. The UHF panel
shows images of many of the manmade targets, but high false alarms caused by the
foliage clutter in the scene. The detection at VHF is higher where the foliage attenuation
is significantly lower, and the target cross sections are larger than the clutter. However,
these lower frequencies provide limited resolution (i.e., pixels on target) to characterize
the objects in the image.
This realization of reliable imaging capabilities for FOPEN SAR was important.
It started a five-year campaign to re-characterize the foliage clutter so better SAR system
engineering could be designed. It was also realized at that time that a better
understanding of the foliage scattering phenomenology would derive civilian uses for
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Dengan kemajuan dalam teknologi radar kritis generasi gelombang wideband dan
pembentukan citra digital, masyarakat bisa mulai tugas memahami kemampuan
dan keterbatasan fopen SAR. Sistem microwave SAR baru saja mulai
untuk mendapatkan penerimaan dalam komunitas pengawasan, yang mengandalkan resolusi tinggi
gambar selama beberapa dekade. Gambar 14-5 menyajikan motivasi untuk fopen SAR kebutuhan dan
melihat maju pada apa yang menyediakan pengguna operasional - apakah militer atau komersial
pelanggan dari produk gambar [9]. Semua empat panel pada gambar yang yang sama
adegan - wilayah hutan dengan beberapa kendaraan yang diparkir di bawah dedaunan dan pohon
garis - tetapi dikumpulkan dengan teknologi pencitraan yang berbeda. Di sebelah kiri adalah moderat untuk
resolusi tinggi gambar optik, tetapi kendaraan tidak dapat diamati hingga sensor
Nadir mencari. Gambar sebelah kanan adalah 1 meter resolusi gambar X-band khas
dari adegan yang diambil pada hari yang sama. Pendeteksian sporadis diperoleh, tapi hanya jika
kilatan target bisa ditangkap di gambar. Tak satu pun dari kedua produk gambar ini
akan memuaskan pengguna, terutama ketika tingkat cakupan wilayah yang tinggi diperlukan.
Dua gambar SAR berikutnya, yang berada dalam UHF (235-445 MHz) dan VHF (20-
88 MHz), menunjukkan kemampuan lebih optimis untuk mendeteksi target tetap. Panel UHF
menunjukkan gambar dari banyak target buatan manusia, namun tinggi alarm palsu yang disebabkan oleh
kekacauan dedaunan dalam adegan. Deteksi di VHF lebih tinggi di mana pelemahan dedaunan
secara signifikan lebih rendah, dan bagian sasaran lintas lebih besar dari kekacauan. Namun,
ini frekuensi yang lebih rendah memberikan resolusi yang terbatas (yaitu, piksel pada target) untuk mengkarakterisasi
obyek dalam gambar.
Realisasi ini kemampuan pencitraan yang dapat diandalkan untuk fopen SAR penting.
Ini dimulai kampanye lima tahun untuk kembali ciri-dedaunan kekacauan sehingga baik SAR sistem
rekayasa dapat dirancang. Hal itu juga disadari pada waktu itu yang lebih baik
pemahaman tentang fenomenologi hamburan dedaunan akan menurunkan penggunaan sipil untuk
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: