1. IntroductionConsider the single variable nonlinear equationf (x) =  terjemahan - 1. IntroductionConsider the single variable nonlinear equationf (x) =  Bahasa Indonesia Bagaimana mengatakan

1. IntroductionConsider the single

1. Introduction
Consider the single variable nonlinear equation
f (x) = 0. (1)
Finding the zeros (1) is an interesting and very ancient problem in numerical analysis. Newton and fixed point iterative methods are very old methods for solving nonlinear equations. Newton method is quadratically convergent where as fixed point method is linear convergent. Many modifications have been made in Newton’s method to get cubically convergent iterative methods. Many higher order iterative methods have been established to approximate the solution of (1) by using different techniques including Taylor’s series, quadrature rules, Adomain decomposition, homotopy perturbation, Gejji and Jafari decomposition, Noor decomposition, see the refrences [1]-[8]. Initialty, we do not put any restrictions on the original function f. In fixed point method, we rewrite f (x) = 0 as x = g (x) where
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
1. IntroductionConsider the single variable nonlinear equationf (x) = 0. (1)Finding the zeros (1) is an interesting and very ancient problem in numerical analysis. Newton and fixed point iterative methods are very old methods for solving nonlinear equations. Newton method is quadratically convergent where as fixed point method is linear convergent. Many modifications have been made in Newton’s method to get cubically convergent iterative methods. Many higher order iterative methods have been established to approximate the solution of (1) by using different techniques including Taylor’s series, quadrature rules, Adomain decomposition, homotopy perturbation, Gejji and Jafari decomposition, Noor decomposition, see the refrences [1]-[8]. Initialty, we do not put any restrictions on the original function f. In fixed point method, we rewrite f (x) = 0 as x = g (x) where
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
1. Pendahuluan
Pertimbangkan tunggal persamaan nonlinear variabel
f (x) = 0. (1)
Menemukan nol (1) merupakan masalah yang menarik dan sangat kuno dalam analisis numerik. Newton dan metode iterasi titik tetap merupakan metode yang sangat tua untuk memecahkan persamaan nonlinear. Metode Newton adalah kuadratik konvergen di mana sebagai metode titik tetap konvergen linear. Banyak modifikasi telah dibuat dalam metode Newton untuk mendapatkan metode iterasi cubically konvergen. Metode iterasi banyak yang lebih tinggi telah dibentuk untuk mendekati solusi dari (1) dengan menggunakan teknik yang berbeda termasuk seri Taylor, aturan quadrature, Adomain dekomposisi, gangguan homotopy, Gejji dan Jafari dekomposisi, Noor dekomposisi, melihat refrences [1] - [8 ]. Initialty, kita tidak menempatkan pembatasan pada fungsi asli f. Dalam metode titik tetap, kita menulis ulang f (x) = 0 sebagai x = g (x) di mana
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: