By using this technique, your data warehouse will be up all the time.  terjemahan - By using this technique, your data warehouse will be up all the time.  Bahasa Indonesia Bagaimana mengatakan

By using this technique, your data

By using this technique, your data warehouse will be up all the time. Dropping and
re-creating a view takes only a few seconds. This technique is commonly used to increase the
data warehouse availability, both in packaged applications running on a normalized data
warehouse as well in custom-developed data warehouses.
Summary Tables
Out of the many things that can improve data warehouse performance, the summary table
is at the top of the list. (The second one is table partitioning, and the third one is indexing.)
This is because the data that the users need is already precalculated. We will discuss these
three things one by one in the next three main sections.
Say you have a report that displays a graph of the summary of weekly sales data for the
last 12 weeks by product group or by stores. Let’s say that within a week you have 1 million
rows. So the stored procedure behind that report must process 1 million rows and display the
data on the screen as a graph, while the user waits. Let’s say that this takes 45 seconds.
If you produce a table called weekly_sales_summary, which runs the same query, and put
the result in this summary table, when the user accesses the report, the stored procedure or
the SQL statement behind the report needs to access only this summary table. The response
time of the report is greatly improved; it’s probably only one or two seconds now.
The summary table needs to be at least 10 times smaller (in terms of the number of rows),
ideally 100 times smaller or more. Otherwise, there is no point creating a summary table. If
you wonder where 10 and 100 come from, the guideline to determine whether it is worth creating
the summary table is to compare the performance improvement with the time required
to build it. What I meant by “performance improvement” is how much faster querying the
summary table compared to querying the underlying table directly is. If the performance
improvement is insignificant (say less than 10 percent), if it takes a long time to build the table
(say one hour), and if the query is not used frequently, then it’s not worth building a summary
table. Remember that a summary table needs to be updated every time the underlying fact
table is updated. If the number of rows in the summary table is much less than the underlying
table, such as 10 or 100 times smaller, usually the performance improvement is significant.
The ideal time to refresh the summary tables is immediately after the population of the underlying
fact table.
As we discussed in Chapter 5, we have three types of fact table: the transactional fact
table, the periodic snapshot fact table, and the accumulative snapshot fact table. A summary
fact table is suitable for a transaction fact table. For a periodic snapshot fact table, we have the
“latest summary table.” A latest summary table contains only today’s version of the snapshot.
For example, the Subscription Sales fact table contains a daily snapshot of all the membership
subscriptions. If we have 1 million customer subscriptions, the table would contain 1 million
records every day. Over two years, there would be 730 million rows in the fact table. In this
case, we can create a table called fact_subscription_sales_latest that contains only today’s
rows so it contains only 1 million rows and is therefore faster. This latest summary table is useful
if you need information that depends on the today value only.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Dengan menggunakan teknik ini, gudang data Anda akan sepanjang waktu. Menjatuhkan dankembali menciptakan tampilan yang membutuhkan hanya beberapa detik. Teknik ini biasanya digunakan untuk meningkatkanketersediaan gudang data, baik dalam paket aplikasi yang berjalan pada data dinormalisasiGudang serta dalam gudang data dikembangkan custom.Tabel ringkasanDari banyak hal yang dapat meningkatkan kinerja gudang data, tabel ringkasanadalah di bagian atas daftar. (Kedua adalah tabel partisi, dan yang ketiga adalah pengindeksan.)Hal ini karena data yang pengguna butuhkan sudah precalculated. Kita akan membahas initiga hal satu persatu dalam tiga bagian utama.Katakanlah Anda memiliki sebuah laporan yang menampilkan grafik ringkasan data penjualan mingguan untukterakhir 12 minggu oleh kelompok produk atau toko. Mari kita mengatakan bahwa dalam waktu seminggu Anda memiliki 1 jutabaris. Sehingga prosedur yang tersimpan di belakang laporan tersebut harus proses baris 1 juta dan menampilkandata pada layar sebagai grafik, sambil menunggu pengguna. Mari kita mengatakan bahwa ini membutuhkan 45 detik.Jika Anda menghasilkan sebuah tabel yang disebut weekly_sales_summary, yang menjalankan query yang sama, dan menempatkanHasilnya di tabel ringkasan ini, ketika pengguna mengakses laporan, prosedur yang tersimpan ataupernyataan SQL yang di belakang laporan perlu mengakses hanya tabel ringkasan ini. Responsaat laporan sangat meningkat; itu mungkin hanya satu atau dua detik sekarang.Tabel ringkasan perlu setidaknya 10 kali lebih kecil (dalam hal jumlah baris),Idealnya 100 kali lebih kecil atau lebih. Jika tidak, ada gunanya menciptakan tabel ringkasan. JikaAnda bertanya-tanya mana 10 dan 100 berasal, pedoman untuk menentukan apakah worth menciptakanTabel ringkasan adalah untuk membandingkan kinerja dengan waktu yang dibutuhkanuntuk membangunnya. Apa yang saya maksud dengan "perbaikan kinerja" adalah berapa banyak query lebih cepatadalah tabel ringkasan dibandingkan dengan query tabel yang mendasari langsung. Jika kinerjaperbaikan tidak signifikan (mengatakan kurang dari 10 persen), jika dibutuhkan waktu lama untuk membangun tabel(mengatakan satu jam), dan jika query tidak sering digunakan, maka hal ini tidak layak bangunan ringkasantabel. Ingat bahwa tabel ringkasan perlu diperbarui setiap kali fakta yang mendasariTabel ini diperbarui. Jika jumlah baris dalam tabel ringkasan jauh lebih sedikit daripada yang mendasariBiliar, seperti 10 atau 100 kali lebih kecil, biasanya perbaikan kinerja signifikan.Waktu yang ideal untuk me-refresh tabel ringkasan adalah segera setelah populasi yang mendasariTabel fakta.Seperti yang kita bahas dalam Bab 5, kami memiliki tiga jenis tabel fakta: fakta transaksionaltabel, tabel periodik snapshot fakta, dan tabel fakta akumulatif snapshot. RingkasanTabel fakta ini cocok untuk meja fakta transaksi. Untuk tabel periodik snapshot fakta, kita memiliki"tabel ringkasan terbaru." Tabel ringkasan terbaru berisi hanya versi saat ini dari snapshot.Sebagai contoh, berlangganan penjualan fakta tabel berisi gambaran harian dari semua keanggotaanlangganan. Jika kita memiliki 1 juta pelanggan langganan, tabel akan berisi 1 jutaCatatan setiap hari. Selama dua tahun, akan ada 730 juta baris dalam tabel fakta. Dalam hal inikasus, kita dapat membuat sebuah tabel yang disebut fact_subscription_sales_latest yang berisi hanya hari inibaris sehingga berisi baris hanya 1 juta dan oleh karena itu lebih cepat. Tabel ringkasan ini Pemesanan ini bergunaJika Anda memerlukan informasi yang tergantung pada nilai hari ini hanya.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
By using this technique, your data warehouse will be up all the time. Dropping and
re-creating a view takes only a few seconds. This technique is commonly used to increase the
data warehouse availability, both in packaged applications running on a normalized data
warehouse as well in custom-developed data warehouses.
Summary Tables
Out of the many things that can improve data warehouse performance, the summary table
is at the top of the list. (The second one is table partitioning, and the third one is indexing.)
This is because the data that the users need is already precalculated. We will discuss these
three things one by one in the next three main sections.
Say you have a report that displays a graph of the summary of weekly sales data for the
last 12 weeks by product group or by stores. Let’s say that within a week you have 1 million
rows. So the stored procedure behind that report must process 1 million rows and display the
data on the screen as a graph, while the user waits. Let’s say that this takes 45 seconds.
If you produce a table called weekly_sales_summary, which runs the same query, and put
the result in this summary table, when the user accesses the report, the stored procedure or
the SQL statement behind the report needs to access only this summary table. The response
time of the report is greatly improved; it’s probably only one or two seconds now.
The summary table needs to be at least 10 times smaller (in terms of the number of rows),
ideally 100 times smaller or more. Otherwise, there is no point creating a summary table. If
you wonder where 10 and 100 come from, the guideline to determine whether it is worth creating
the summary table is to compare the performance improvement with the time required
to build it. What I meant by “performance improvement” is how much faster querying the
summary table compared to querying the underlying table directly is. If the performance
improvement is insignificant (say less than 10 percent), if it takes a long time to build the table
(say one hour), and if the query is not used frequently, then it’s not worth building a summary
table. Remember that a summary table needs to be updated every time the underlying fact
table is updated. If the number of rows in the summary table is much less than the underlying
table, such as 10 or 100 times smaller, usually the performance improvement is significant.
The ideal time to refresh the summary tables is immediately after the population of the underlying
fact table.
As we discussed in Chapter 5, we have three types of fact table: the transactional fact
table, the periodic snapshot fact table, and the accumulative snapshot fact table. A summary
fact table is suitable for a transaction fact table. For a periodic snapshot fact table, we have the
“latest summary table.” A latest summary table contains only today’s version of the snapshot.
For example, the Subscription Sales fact table contains a daily snapshot of all the membership
subscriptions. If we have 1 million customer subscriptions, the table would contain 1 million
records every day. Over two years, there would be 730 million rows in the fact table. In this
case, we can create a table called fact_subscription_sales_latest that contains only today’s
rows so it contains only 1 million rows and is therefore faster. This latest summary table is useful
if you need information that depends on the today value only.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: