(a) Black-body radiationA hot object emits electromagnetic radiation.  terjemahan - (a) Black-body radiationA hot object emits electromagnetic radiation.  Bahasa Indonesia Bagaimana mengatakan

(a) Black-body radiationA hot objec

(a) Black-body radiation
A hot object emits electromagnetic radiation. At high temperatures, an appreciable
proportion of the radiation is in the visible region of the spectrum, and a higher
proportion of short-wavelength blue light is generated as the temperature is raised.
This behaviour is seen when a heated metal bar glowing red hot becomes white hot
when heated further. The dependence is illustrated in Fig. 7.3, which shows how the
energy output varies with wavelength at several temperatures. The curves are those
of an ideal emitter called a black body, which is an object capable of emitting and
absorbing all wavelengths of radiation uniformly. A good approximation to a black
body is a pinhole in an empty container maintained at a constant temperature,
because any radiation leaking out of the hole has been absorbed and re-emitted inside
so many times as it reflected around inside the container that it has come to thermal
equilibrium with the walls (Fig. 7.4).
The approach adopted by nineteenth-century scientists to explain black-body radiation was to calculate the energy density, dE, the total energy in a region of the electromagnetic field divided by the volume of the region (units: joules per metre-cubed,
J m−3), due to all the oscillators corresponding to wavelengths between λ and λ + dλ.
This energy density is proportional to the width, dλ, of this range, and is written
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
(a) Black-body radiationA hot object emits electromagnetic radiation. At high temperatures, an appreciableproportion of the radiation is in the visible region of the spectrum, and a higherproportion of short-wavelength blue light is generated as the temperature is raised.This behaviour is seen when a heated metal bar glowing red hot becomes white hotwhen heated further. The dependence is illustrated in Fig. 7.3, which shows how theenergy output varies with wavelength at several temperatures. The curves are thoseof an ideal emitter called a black body, which is an object capable of emitting andabsorbing all wavelengths of radiation uniformly. A good approximation to a blackbody is a pinhole in an empty container maintained at a constant temperature,because any radiation leaking out of the hole has been absorbed and re-emitted insideso many times as it reflected around inside the container that it has come to thermalequilibrium with the walls (Fig. 7.4).The approach adopted by nineteenth-century scientists to explain black-body radiation was to calculate the energy density, dE, the total energy in a region of the electromagnetic field divided by the volume of the region (units: joules per metre-cubed,J m−3), due to all the oscillators corresponding to wavelengths between λ and λ + dλ.This energy density is proportional to the width, dλ, of this range, and is written
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
(a) radiasi Black-tubuh
Sebuah benda panas memancarkan radiasi elektromagnetik. Pada suhu tinggi, cukup
proporsi radiasi di daerah tampak dari spektrum, dan lebih tinggi
proporsi pendek-panjang gelombang cahaya biru yang dihasilkan karena suhu dinaikkan.
Perilaku ini terlihat ketika bar logam dipanaskan bersinar merah panas menjadi putih panas
saat dipanaskan lebih lanjut. Ketergantungan diilustrasikan pada Gambar. 7.3, yang menunjukkan bagaimana
output energi yang bervariasi dengan panjang gelombang pada beberapa temperatur. Kurva adalah mereka
dari emitor yang ideal disebut benda hitam, yang merupakan objek mampu memancarkan dan
menyerap semua panjang gelombang radiasi seragam. Sebuah pendekatan yang baik untuk hitam
tubuh adalah lubang jarum dalam wadah kosong dipertahankan pada suhu konstan,
karena setiap radiasi bocor keluar dari lubang telah diserap dan re-dipancarkan dari dalam
begitu banyak kali karena kembali tercermin sekitar di dalam wadah yang telah datang untuk thermal
keseimbangan dengan dinding (Gbr. 7.4).
Pendekatan yang diadopsi oleh ilmuwan abad kesembilan belas untuk menjelaskan radiasi benda hitam adalah untuk menghitung kepadatan energi, dE, total energi di daerah dari elektromagnetik lapangan dibagi dengan volume wilayah (unit: joule per meter-potong dadu,
J m-3)., karena semua osilator sesuai dengan panjang gelombang antara λ dan λ + dλ
kepadatan energi ini sebanding dengan lebar, dλ, dari kisaran ini, dan ditulis
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: