In this work, the important chromatographic factorswere selected and o terjemahan - In this work, the important chromatographic factorswere selected and o Bahasa Indonesia Bagaimana mengatakan

In this work, the important chromat

In this work, the important chromatographic factors
were selected and optimized by a central composite design experiment. The selection of factors for optimization was based on preliminary experiments and
prior knowledge from literature, as well as certain
instrumental limitations. For instance, the mobile phase
pH was fixed at 3.0 as this could influence the
stability.From preliminary experiments,the mobile
phase consisting of a methanol and triethylamine buffer
was employed in which the concentration of methanol
content was varied.The mobile phase flow rate could also moderately influence selectivity in the HPLC
analysis. Therefore, the key factors selected for the
optimization process were methanol concentration (A),
buffer molarity (B), and flow rate (C). Table 1 shows the
levels of each factors studied for finding out the optimum
values and responses. As can be seen in this table, the As response variables, the capacity factor of
lamivudine (k1), the resolution between tenofovir and
efavirenz (Rs2, 3), and the retention time of efavirenz (tR3)
were chosen. All experiments were performed in
randomized order to minimize the effects of uncontrolled
variables that may introduce a bias on the measurements.
For an experimental design with three factors, the model
including linear, quadratic, and cross terms can be
expressed as:
Y = β0 + β1X1 + β2X2 + β3X3 + β12X1X2 + β13X1X3+β23X2X3
+ β11X21+ _β22X22+ β33X2
whereY is the response to be modeled, β is the
regression coefficient, and X1, X2 and X3 represent
factors A, B and C, respectively. To obtain a simple and
yet realistic model, the insignificant terms (P > 0.05) are
eliminated from the model through a ‘backward
elimination’ process. The statistical parameters obtained
from the ANOVA for the reduced models are given in
table 2.Since R2 always decreases when a regressor
variable is eliminated from a regression model, in
statistical modeling the adjusted R2, which takes the
number of regressor variables into account, is usually
selected. Adjusted R2was defined as: 1- SSE (n-p) / SST
(n-1) = 1-(n-1)/(n-p)x(1-R2)
ranges of each factor used were: methanol concentration
(60–70%), buffer molarity (15–25 mM), and flow rate
(0.7–0.9 ml/min).
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
In this work, the important chromatographic factorswere selected and optimized by a central composite design experiment. The selection of factors for optimization was based on preliminary experiments andprior knowledge from literature, as well as certaininstrumental limitations. For instance, the mobile phasepH was fixed at 3.0 as this could influence thestability.From preliminary experiments,the mobilephase consisting of a methanol and triethylamine bufferwas employed in which the concentration of methanolcontent was varied.The mobile phase flow rate could also moderately influence selectivity in the HPLCanalysis. Therefore, the key factors selected for theoptimization process were methanol concentration (A),buffer molarity (B), and flow rate (C). Table 1 shows thelevels of each factors studied for finding out the optimumvalues and responses. As can be seen in this table, the As response variables, the capacity factor oflamivudine (k1), the resolution between tenofovir andefavirenz (Rs2, 3), and the retention time of efavirenz (tR3)were chosen. All experiments were performed inrandomized order to minimize the effects of uncontrolledvariables that may introduce a bias on the measurements.For an experimental design with three factors, the modelincluding linear, quadratic, and cross terms can beexpressed as:Y = β0 + β1X1 + β2X2 + β3X3 + β12X1X2 + β13X1X3+β23X2X3+ β11X21+ _β22X22+ β33X2whereY is the response to be modeled, β is theregression coefficient, and X1, X2 and X3 representfactors A, B and C, respectively. To obtain a simple andyet realistic model, the insignificant terms (P > 0.05) areeliminated from the model through a ‘backwardelimination’ process. The statistical parameters obtainedfrom the ANOVA for the reduced models are given intable 2.Since R2 always decreases when a regressorvariable is eliminated from a regression model, instatistical modeling the adjusted R2, which takes thenumber of regressor variables into account, is usuallyselected. Adjusted R2was defined as: 1- SSE (n-p) / SST(n-1) = 1-(n-1)/(n-p)x(1-R2)ranges of each factor used were: methanol concentration(60–70%), buffer molarity (15–25 mM), and flow rate(0.7–0.9 ml/min).
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Dalam karya ini, faktor-faktor kromatografi penting
dipilih dan dioptimalkan oleh eksperimen desain komposit pusat. Pemilihan faktor untuk optimasi didasarkan pada percobaan awal dan
pengetahuan dari literatur, serta tertentu
keterbatasan instrumental. Misalnya, fase gerak
pH tetap di 3,0 karena hal ini bisa mempengaruhi
percobaan pendahuluan stability.From, ponsel
fase terdiri dari metanol dan trietilamina penyangga
dipekerjakan di mana konsentrasi metanol
konten adalah varied.The laju aliran fase gerak bisa juga cukup mempengaruhi selektivitas dalam HPLC
analisis. Oleh karena itu, faktor kunci yang dipilih untuk
proses optimasi yang konsentrasi metanol (A),
penyangga molaritas (B), dan laju alir (C). Tabel 1 menunjukkan
tingkat masing-masing faktor diteliti untuk mengetahui optimal
nilai-nilai dan tanggapan. Seperti dapat dilihat pada tabel ini, sebagai variabel respon, faktor kapasitas
lamivudine (k1), resolusi antara tenofovir dan
efavirenz (RS2, 3), dan waktu retensi efavirenz (TR3)
dipilih. Semua percobaan dilakukan di
secara acak untuk meminimalkan efek dari tidak terkendali
. Variabel yang dapat memperkenalkan bias pada pengukuran
Untuk desain eksperimental dengan tiga faktor, model
termasuk linear, kuadrat, dan istilah lintas dapat
dinyatakan sebagai:
Y = β0 + β1X1 + β2X2 + β3X3 + β12X1X2 + β13X1X3 + β23X2X3
+ β11X21 + _β22X22 + β33X2
whereY adalah respon dimodelkan, β adalah
koefisien regresi, dan X1, X2 dan X3 merupakan
faktor A, B dan C masing-masing. Untuk mendapatkan sederhana dan
model yang belum realistis, istilah tidak signifikan (P> 0,05) yang
dieliminasi dari model melalui 'terbelakang
proses eliminasi'. Parameter statistik yang diperoleh
dari ANOVA untuk model berkurang diberikan dalam
tabel 2.Since R2 selalu menurun ketika regressor
variabel dihilangkan dari model regresi, di
pemodelan statistik yang disesuaikan R2, yang mengambil
jumlah variabel regressor ke rekening, adalah biasanya
dipilih. Disesuaikan R2was didefinisikan sebagai: 1- SSE (np) / SST
(n-1) = 1- (n-1) / (np) x (1-R2)
berkisar dari masing-masing faktor yang digunakan adalah: konsentrasi metanol
(60-70% ), penyangga molaritas (15-25 mM), dan laju alir
(0,7-0,9 ml / menit).
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: