In the pioneering studies by Sidney Strauss and his colleagues, for ex terjemahan - In the pioneering studies by Sidney Strauss and his colleagues, for ex Bahasa Indonesia Bagaimana mengatakan

In the pioneering studies by Sidney

In the pioneering studies by Sidney Strauss and his colleagues, for example, children were asked about the sweetness of a mixture that resulted from two glasses filled with water, and with the same or different numbers of pieces of sugar dissolved in them. These authors found that children younger than 5 years of age arrived at (qualitatively) correct answers by relying on their experience based intuitive understanding of intensive quantities. Children between 6 and 10 years of age, in contrast, typically tried to apply quantitative rules, but chose the incorrect one, which led to a drop in their performance. Most of the children predicted that the mixture would become sweeter than the sweetest of the two initial components. Children seemed to add the values of one extensive quantity (amount of sugar) without taking into account that the other extensive quantity (water) also increased. The correct answer reappeared in children from about 10 years on who, as concluded by the authors, understood the role of both relevant extensive quantities and were able to integrate them.
Colleen Moore and her colleagues (Ahl, Moore, & Dixon, 1992 ; Dixon & Moore, 1996 ; Moore, Dixon, & Haines, 1991 ) were particularly interested in the development of function knowledge in tasks involving intensive quantities. They investigated children ’ s understanding of temperature mixture so as to study their self initiated generation of mathematical strategies. A general conclusion from these studies was that children up to the age of 8 years tend to understand the domain quite poorly, and even fifth and eighth graders were far from showing a perfect understanding. Such an understanding would require the grasp of different principles, as has been pointed out by detailed task - analyses in these studies. Children appear to have difficulties even with the seemingly simplest of these, the range principle, stating that the value of the mixture of intensive quantities must always fall between those of the two initial components, or at least cannot lie above or below either of them.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
In the pioneering studies by Sidney Strauss and his colleagues, for example, children were asked about the sweetness of a mixture that resulted from two glasses filled with water, and with the same or different numbers of pieces of sugar dissolved in them. These authors found that children younger than 5 years of age arrived at (qualitatively) correct answers by relying on their experience based intuitive understanding of intensive quantities. Children between 6 and 10 years of age, in contrast, typically tried to apply quantitative rules, but chose the incorrect one, which led to a drop in their performance. Most of the children predicted that the mixture would become sweeter than the sweetest of the two initial components. Children seemed to add the values of one extensive quantity (amount of sugar) without taking into account that the other extensive quantity (water) also increased. The correct answer reappeared in children from about 10 years on who, as concluded by the authors, understood the role of both relevant extensive quantities and were able to integrate them. Colleen Moore and her colleagues (Ahl, Moore, & Dixon, 1992 ; Dixon & Moore, 1996 ; Moore, Dixon, & Haines, 1991 ) were particularly interested in the development of function knowledge in tasks involving intensive quantities. They investigated children ’ s understanding of temperature mixture so as to study their self initiated generation of mathematical strategies. A general conclusion from these studies was that children up to the age of 8 years tend to understand the domain quite poorly, and even fifth and eighth graders were far from showing a perfect understanding. Such an understanding would require the grasp of different principles, as has been pointed out by detailed task - analyses in these studies. Children appear to have difficulties even with the seemingly simplest of these, the range principle, stating that the value of the mixture of intensive quantities must always fall between those of the two initial components, or at least cannot lie above or below either of them.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Dalam studi perintis oleh Sidney Strauss dan rekan-rekannya, misalnya, anak-anak bertanya tentang manisnya campuran yang dihasilkan dari dua gelas fi diisi dengan air, dan dengan nomor yang sama atau berbeda dari potongan gula terlarut di dalamnya. Para penulis ini menemukan bahwa anak-anak muda dari 5 tahun tiba di (kualitatif) jawaban yang benar dengan mengandalkan pengalaman mereka berdasarkan pemahaman intuitif dalam jumlah yang intensif. Anak-anak antara 6 dan 10 tahun, sebaliknya, biasanya mencoba untuk menerapkan aturan kuantitatif, tetapi memilih salah satu, yang menyebabkan penurunan kinerja mereka. Sebagian besar anak-anak meramalkan bahwa campuran akan menjadi lebih manis dari yang paling manis dari dua komponen awal. Anak-anak tampak untuk menambahkan nilai-nilai satu kuantitas luas (jumlah gula) tanpa memperhitungkan bahwa kuantitas luas lainnya (air) juga meningkat. Jawaban yang benar muncul pada anak-anak dari sekitar 10 tahun yang, seperti disimpulkan oleh penulis, memahami peran kedua jumlah luas yang relevan dan mampu mengintegrasikan mereka.
Colleen Moore dan rekan-rekannya (Ahl, Moore, & Dixon, 1992; Dixon & Moore, 1996; Moore, Dixon, & Haines, 1991) sangat tertarik dalam pengembangan pengetahuan fungsi dalam tugas-tugas yang melibatkan jumlah yang intensif. Mereka menyelidiki pemahaman anak-anak dari campuran suhu sehingga untuk mempelajari diri dimulai generasi mereka strategi matematika. Sebuah kesimpulan umum dari studi ini adalah bahwa anak-anak hingga usia 8 tahun cenderung memahami domain cukup buruk, dan bahkan fi kelima dan kedelapan grader jauh dari menunjukkan pemahaman yang sempurna. Pemahaman seperti itu akan membutuhkan pemahaman prinsip-prinsip yang berbeda, seperti yang telah ditunjukkan oleh tugas rinci - analisis dalam studi ini. Anak-anak tampaknya memiliki kesulitan- kesulitan bahkan dengan yang tampaknya sederhana ini, prinsip range, yang menyatakan bahwa nilai campuran dalam jumlah yang intensif harus selalu jatuh antara orang-orang dari dua komponen awal, atau setidaknya tidak bisa berbohong atas atau di bawah salah satu dari mereka.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: