family [43] has shown that the sonication of magnesium diboride slurri terjemahan - family [43] has shown that the sonication of magnesium diboride slurri Bahasa Indonesia Bagaimana mengatakan

family [43] has shown that the soni


family [43] has shown that the sonication of magnesium diboride slurries in decalin produces material with a significant intergrain fusion. Sonication of the MgB2 in the presence of Fe(CO)5 produces magnetic Fe2 O3 nanoparticles embedded in the MgB2 bulk. The resulting superconductor–ferromagnet composite exhibits a con- siderable enhancement of its magnetic hysteresis, which implies an increase of vortex pinning strength due to embedded magnetic nanoparticles.
More popular than the use of ultrasonics for coating surfaces was their use in the field of mesoporous mate- rials. It involved both the preparation of mesoporous products as well as the insertion of nanoparticles into the pores by sonochemical methods.


3. Shapes of nanomaterials created sonochemically

Sonochemical reactions yield, in all cases, nanosized products. As stated above, they might be amorphous in cases of volatile solutes, or crystalline when the solutes undergoing sonochemistry are non-volatile (not in all cases). The products differ also in their morphology. The first nanoproducts were either spherical or close to a spherical structure. Over the years, research groups all around the world obtained nanoproducts having unique shapes, such as nanotubes, nanorods, nested fullerenes, hollowed spheres, and many others. This section is de- voted to these shapes and to the understanding of how and why such products result from ultrasound radia- tion.

3.1. One-dimensional structures

The dimensionality of nanostructures and their importance is perhaps best demonstrated in the field of semiconductors, where a variety of different nanostruc- tures were produced for manipulating the optical properties of materials. This includes 0D (quantum dots), 1D (nanowires), 2D (films), and 3D (bulk) con- figurations.
More reports have appeared on the fabrication of nanorods than on nanotubes. We know about at least four compounds, carbon [44], hydrocarbon [45], TiO2 [46], and MeTe2 [47], for which a sonochemical synthesis yielding nanotubes is reported. The most exciting work is that of Katoh [44], which has produced carbon na- notubes sonochemically. The carbon nanotubes are produced by applying ultrasound to liquid chloroben- zene with ZnCl2 particles, and to o-dichlorobenzene with ZnCl2 and Zn particles. The authors have sug- gested that the polymer and the disordered carbon, which are formed by cavitational collapse in homoge- neous liquid, are annealed by the interparticle collision induced by the turbulent flow and by shockwaves [44]. They conclude that in the present study, using relatively

small particles (
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
family [43] has shown that the sonication of magnesium diboride slurries in decalin produces material with a significant intergrain fusion. Sonication of the MgB2 in the presence of Fe(CO)5 produces magnetic Fe2 O3 nanoparticles embedded in the MgB2 bulk. The resulting superconductor–ferromagnet composite exhibits a con- siderable enhancement of its magnetic hysteresis, which implies an increase of vortex pinning strength due to embedded magnetic nanoparticles.More popular than the use of ultrasonics for coating surfaces was their use in the field of mesoporous mate- rials. It involved both the preparation of mesoporous products as well as the insertion of nanoparticles into the pores by sonochemical methods.3. Shapes of nanomaterials created sonochemicallySonochemical reactions yield, in all cases, nanosized products. As stated above, they might be amorphous in cases of volatile solutes, or crystalline when the solutes undergoing sonochemistry are non-volatile (not in all cases). The products differ also in their morphology. The first nanoproducts were either spherical or close to a spherical structure. Over the years, research groups all around the world obtained nanoproducts having unique shapes, such as nanotubes, nanorods, nested fullerenes, hollowed spheres, and many others. This section is de- voted to these shapes and to the understanding of how and why such products result from ultrasound radia- tion.3.1. One-dimensional structuresThe dimensionality of nanostructures and their importance is perhaps best demonstrated in the field of semiconductors, where a variety of different nanostruc- tures were produced for manipulating the optical properties of materials. This includes 0D (quantum dots), 1D (nanowires), 2D (films), and 3D (bulk) con- figurations.More reports have appeared on the fabrication of nanorods than on nanotubes. We know about at least four compounds, carbon [44], hydrocarbon [45], TiO2 [46], and MeTe2 [47], for which a sonochemical synthesis yielding nanotubes is reported. The most exciting work is that of Katoh [44], which has produced carbon na- notubes sonochemically. The carbon nanotubes are produced by applying ultrasound to liquid chloroben- zene with ZnCl2 particles, and to o-dichlorobenzene with ZnCl2 and Zn particles. The authors have sug- gested that the polymer and the disordered carbon, which are formed by cavitational collapse in homoge- neous liquid, are annealed by the interparticle collision induced by the turbulent flow and by shockwaves [44]. They conclude that in the present study, using relatively small particles (<200 mm in diameter), a size at which inter-particle collision frequently occurs and for which micro-jet formation is not efficient. Under these condi- tions, a high temperature can be achieved at the site of particle collision. After the collision, polymers, which are produced by the homogeneous process, can be converted into carbon nanotube.A new type of hydrocarbon nanotube and onion, with interlayer spacing ranging from 3.4 to 5.8 A , was discovered by sonicating Si nanowires with common organic solvents under ambient conditions (room tem- perature and atmospheric pressure) [45]. Lee and asso- ciates believe that sonication not only promotes the reaction between SiHx and the organic molecules, but also facilitates the formation of the different types/ shapes of carbon nanostructures, as well as causing the extrusion (or demolding) of the products.In a typical synthesis, titania powder consisting of particles with a diameter of 20 nm was sonicated in a 10M NaOH aqueous solution in a Teflon vessel [46]. The mixture was sonicated for 60 min. The sonicated solu- tion in the Teflon vessel was then placed in an oil-bath and maintained at 110 C for 4 h. Under similar (but different) conditions, nanowhiskers were obtained (shown in Fig. 2(b)). XRD analysis (Fig. 1(b)) shows that when the raw material of titania particles is soni- cated with the NaOH aqueous solution under conditions of low power, thin small titanate sheets are formed. When the products are heated at 110 C for 4 h, the small titanate sheets increase in size. The titanate sheets are exfoliated into nanosheets and the nanosheets rollFig. 1. TEM images of (a) titania nanotubes, (b) powders obtained by heat-eating sonicated products for 4 h at 110 C followed by washing with water for 5 min.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!

keluarga [43] telah menunjukkan bahwa sonikasi bubur magnesium diboride di decalin menghasilkan bahan dengan yang signifikan antar butir fusi. Sonication dari MgB2 di hadapan Fe (CO) 5 menghasilkan magnet nanopartikel Fe2 O3 tertanam dalam massal MgB2. Hasil superkonduktor-feromagnet komposit menunjukkan perangkat tambahan siderable con- hysteresis magnetik, yang berarti peningkatan pusaran menjepit kekuatan karena nanopartikel magnetik tertanam.
Lebih populer daripada penggunaan ultrasonik untuk permukaan lapisan adalah penggunaannya di lapangan dari pasangan mesopori - rial. Ini melibatkan kedua persiapan produk mesopori serta penyisipan nanopartikel ke dalam pori-pori dengan metode cukup berhasil. 3. Bentuk Nanomaterials dibuat sonochemically reaksi cukup berhasil dan menghasilkan, dalam semua kasus, produk nanosized. Sebagaimana dinyatakan di atas, mereka mungkin amorf dalam kasus zat terlarut yang mudah menguap, atau kristal ketika zat terlarut menjalani sonochemistry adalah non-volatile (tidak dalam semua kasus). Produk di ff er juga dalam morfologi mereka. The nanoproducts pertama yang baik bulat atau dekat dengan struktur bulat. Selama bertahun-tahun, kelompok peneliti di seluruh dunia memperoleh nanoproducts memiliki bentuk yang unik, seperti nanotube, nanorods, fullerene bersarang, bola cekung, dan banyak lainnya. Bagian ini adalah de- memilih untuk bentuk-bentuk ini dan pemahaman tentang bagaimana dan mengapa produk tersebut hasil dari USG radia- tion. 3.1. Struktur satu dimensi The dimensi dari struktur nano dan pentingnya mereka mungkin paling ditunjukkan di lapangan semikonduktor, di mana berbagai berlainan membangun struktur nanostruc- diproduksi untuk memanipulasi sifat optik bahan. Ini termasuk 0D (titik-titik kuantum), 1D (kawat nano), 2D (LMS fi), dan 3D (bulk) gurations fi con-. Laporan Lebih telah muncul di fabrikasi nanorods dari pada nanotube. Kita tahu tentang setidaknya empat senyawa, karbon [44], hidrokarbon [45], TiO2 [46], dan MeTe2 [47], yang merupakan sintesis SONOKIMIA menghasilkan nanotube dilaporkan. Pekerjaan yang paling menarik adalah bahwa dari Katoh [44], yang telah menghasilkan karbon notubes na- sonochemically. Nanotube karbon yang diproduksi dengan menerapkan USG untuk chloroben- zene cair dengan partikel ZnCl2, dan o-dichlorobenzene dengan ZnCl2 dan Zn partikel. Para penulis harus menyarankan bahwa polimer dan karbon teratur, yang dibentuk oleh runtuhnya cavitational dalam cairan homogen, yang anil oleh tabrakan interparticle disebabkan oleh turbulen aliran dan dengan Gelombang [44]. Mereka menyimpulkan bahwa dalam penelitian ini, menggunakan relatif partikel kecil (<200 mm), ukuran di mana tabrakan antar-partikel sering terjadi dan yang pembentukan mikro-jet tidak e FFI efisien. Di bawah ini kondisi-kondisi, suhu tinggi dapat dicapai di lokasi tabrakan partikel. Setelah tabrakan, polimer, yang diproduksi oleh proses homogen, dapat diubah menjadi karbon nanotube. Sebuah jenis baru dari nanotube hidrokarbon dan bawang, dengan jarak interlayer mulai 3,4-5,8 A, ditemukan oleh sonicating Si nanowires dengan pelarut organik umum di bawah kondisi ruangan (kamar template perature dan tekanan atmosfer) [45]. Lee dan ciates Asso percaya bahwa sonication tidak hanya mempromosikan reaksi antara SiHx dan molekul organik, tetapi juga memfasilitasi pembentukan di ff jenis erent / bentuk struktur nano karbon, serta menyebabkan ekstrusi (atau demolding) dari produk. Dalam sintesis khas, bubuk titania yang terdiri dari partikel dengan diameter 20 nm disonikasi dalam 10 M NaOH larutan dalam fl Te di kapal [46]. Campuran disonikasi selama 60 menit. Tion larutan yang sonicated di Te fl di kapal itu kemudian ditempatkan dalam minyak mandi dan dipertahankan pada 110 C selama 4 jam. Di bawah mirip (tapi berlainan) kondisi, nanowhiskers diperoleh (ditunjukkan pada Gambar. 2 (b)). Analisis XRD (Gambar. 1 (b)) menunjukkan bahwa ketika bahan baku partikel titania adalah soni- yang berpendidikan lebih rendah dengan larutan berair NaOH dalam kondisi daya rendah, lembaran tipis titanat kecil terbentuk. Ketika produk yang dipanaskan pada 110 C selama 4 jam, seprai titanat kecil bertambah besar. Lembaran titanate yang dikelupas ke nanosheets dan nanosheets menggulung Gbr. 1. gambar TEM dari (a) nanotube titania, (b) serbuk diperoleh produk panas-makan disonikasi selama 4 jam pada 110 C diikuti dengan pencucian dengan air selama 5 menit.











































Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: