The elution profile of A. macracantha gum, Fig. 1,obtained by atmosphe terjemahan - The elution profile of A. macracantha gum, Fig. 1,obtained by atmosphe Bahasa Indonesia Bagaimana mengatakan

The elution profile of A. macracant

The elution profile of A. macracantha gum, Fig. 1,
obtained by atmospheric pressure size exclusion chromatography
(APSEC), showed many fractions which have
their characteristic range of elution volume (mL). The first
fraction, constituted by carbohydrate and protein, may
contain the population of the highest molecular weight.
The second fraction of higher elution volume may correspond
to oligosaccharides linked to peptides. The fractions
3 and 4 of relatively low molecular weight contain only
peptide and carbohydrate, respectively.
The gum, after basic hydrolysis, showed a modified elution
profile, Fig. 2, in comparison with that of the original
gum, Fig. 1. The absence of the fractions 3 and 4 that have
higher elution volume indicates the vulnerability to basic
hydrolysis of some linkages present in the molecular populations.
The peptidic linkages are generally vulnerable to
basic hydrolysis, except those hydroxyproline-O-glycosidic
linkages, that are stable in base, in contrast to other O-glycosylated
hydroxyamino acids such as serine and threonine
which may undergo b-elimination (Goodrum, Patel, Leykam,
& Kieliszewski, 2000; Lamport & Miller, 1971). The
lowest molecular weight fractions (5), Fig. 1, remains after
basic treatment (2), Fig. 2, which may indicate the presenceof oligosaccharides. Much variation was not observed in
the main fraction that may contain the highest molecular
weight component, Figs. 1 and 2. This little variation
may be attributed to partial alkaline hydrolysis and the
APSEC experimental conditions were not suitable to separate
the populations that have very close molecular weight.
Although, the alkali conditions used and the APSEC technique
led to isolation and further characterization of this
main fraction, that contains carbohydrate and proteinaceous
material.
Study of the main fraction of high molecular weight, isolated
after basic hydrolysis, showed the presence of
hydroxyproline, serine, and lysine. These amino acids, specially
hydroxyproline, have been reported previously for A.
robusta and A. tortilis gum (Churms & Stephen, 1984;
Gamon et al., 1986). On the other hand, sequential hydrolysis
of this fraction with trifluoracetic acid, Table 2, demonstrated
that rhamnose is present as terminal residues in
the carbohydrate structure of the main fraction; meanwhile,
the relative difficulty to remove arabinose residues
may suggest their position as internal residues. It is important
to note that hydroxyproline, serine, and arabinose
have been involved in the carbohydrate–protein linkage,
in the structure of many gums (Akiyama et al., 1984; Kieliszewski,
Kamyab, Leykam, & Lamport, 1992; Lamport &
Miller, 1971; Nothnagel, 1997; Qin, Yamauchi, Aizawa,
Inakuma, & Kato, 2001).
The elution profile, Fig. 1, discussed above, is according
to the presence of a complex heterogeneous system as has
been observed in some Gummiferae and Vulgares Acacia
gums (Akiyama et al., 1984; Al-Assaf et al., 2005; Fauconnier
et al., 2000; Underwood & Cheetam, 1994).
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
The elution profile of A. macracantha gum, Fig. 1,obtained by atmospheric pressure size exclusion chromatography(APSEC), showed many fractions which havetheir characteristic range of elution volume (mL). The firstfraction, constituted by carbohydrate and protein, maycontain the population of the highest molecular weight.The second fraction of higher elution volume may correspondto oligosaccharides linked to peptides. The fractions3 and 4 of relatively low molecular weight contain onlypeptide and carbohydrate, respectively.The gum, after basic hydrolysis, showed a modified elutionprofile, Fig. 2, in comparison with that of the originalgum, Fig. 1. The absence of the fractions 3 and 4 that havehigher elution volume indicates the vulnerability to basichydrolysis of some linkages present in the molecular populations.The peptidic linkages are generally vulnerable tobasic hydrolysis, except those hydroxyproline-O-glycosidiclinkages, that are stable in base, in contrast to other O-glycosylatedhydroxyamino acids such as serine and threoninewhich may undergo b-elimination (Goodrum, Patel, Leykam,& Kieliszewski, 2000; Lamport & Miller, 1971). Thelowest molecular weight fractions (5), Fig. 1, remains afterbasic treatment (2), Fig. 2, which may indicate the presenceof oligosaccharides. Much variation was not observed inthe main fraction that may contain the highest molecularweight component, Figs. 1 and 2. This little variationmay be attributed to partial alkaline hydrolysis and theAPSEC experimental conditions were not suitable to separatethe populations that have very close molecular weight.Although, the alkali conditions used and the APSEC techniqueled to isolation and further characterization of thismain fraction, that contains carbohydrate and proteinaceousmaterial.Study of the main fraction of high molecular weight, isolatedafter basic hydrolysis, showed the presence ofhydroxyproline, serine, and lysine. These amino acids, speciallyhydroxyproline, have been reported previously for A.robusta and A. tortilis gum (Churms & Stephen, 1984;Gamon et al., 1986). On the other hand, sequential hydrolysisof this fraction with trifluoracetic acid, Table 2, demonstratedthat rhamnose is present as terminal residues inthe carbohydrate structure of the main fraction; meanwhile,the relative difficulty to remove arabinose residuesmay suggest their position as internal residues. It is importantto note that hydroxyproline, serine, and arabinosehave been involved in the carbohydrate–protein linkage,in the structure of many gums (Akiyama et al., 1984; Kieliszewski,Kamyab, Leykam, & Lamport, 1992; Lamport &Miller, 1971; Nothnagel, 1997; Qin, Yamauchi, Aizawa,Inakuma, & Kato, 2001).The elution profile, Fig. 1, discussed above, is accordingto the presence of a complex heterogeneous system as hasbeen observed in some Gummiferae and Vulgares Acaciagums (Akiyama et al., 1984; Al-Assaf et al., 2005; Fauconnieret al., 2000; Underwood & Cheetam, 1994).
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Profil elusi A. macracantha gusi, Gambar. 1,
diperoleh dengan tekanan atmosfer kromatografi eksklusi ukuran
(APSEC), menunjukkan banyak fraksi yang memiliki
berbagai karakteristik mereka volume elusi (mL). Pertama
fraksi, dibentuk oleh karbohidrat dan protein, dapat
mengandung populasi berat molekul tertinggi.
Fraksi kedua volume elusi yang lebih tinggi mungkin sesuai
dengan oligosakarida terkait dengan peptida. Fraksi
3 dan 4 dari berat molekul relatif rendah hanya berisi
peptida dan karbohidrat masing-masing.
karet, setelah hidrolisis dasar, menunjukkan elusi dimodifikasi
profil, Gambar. 2, dibandingkan dengan yang asli
gusi, Gambar. 1. Tidak adanya fraksi 3 dan 4 yang memiliki
volume yang lebih tinggi elusi menunjukkan kerentanan terhadap dasar
hidrolisis beberapa hubungan hadir dalam populasi molekul.
Keterkaitan peptidic umumnya rentan terhadap
hidrolisis dasar, kecuali yang-hidroksiprolin-O glikosidik
keterkaitan, bahwa stabil dalam basis, berbeda dengan O-glikosilasi lainnya
asam hydroxyamino seperti serin dan treonin
yang dapat mengalami b-eliminasi (Goodrum, Patel, Leykam,
& Kieliszewski, 2000; Lamport & Miller, 1971). Para
fraksi berat molekul rendah (5), Gambar. 1, tetap setelah
pengobatan dasar (2), Gambar. 2, yang mungkin menunjukkan oligosakarida presenceof. Banyak variasi tidak diamati dalam
fraksi utama yang mungkin berisi molekul tertinggi
komponen berat, Gambar. 1 dan 2. variasi kecil ini
mungkin disebabkan hidrolisis basa parsial dan
kondisi eksperimental APSEC tidak cocok untuk memisahkan
populasi yang memiliki berat molekul sangat dekat.
Meskipun, kondisi alkali yang digunakan dan teknik APSEC
menyebabkan isolasi dan karakterisasi lebih lanjut dari ini
fraksi utama, yang berisi karbohidrat dan protein
bahan.
Studi fraksi utama berat molekul tinggi, terisolasi
setelah hidrolisis dasar, menunjukkan adanya
hidroksiprolin, serin, dan lisin. Asam amino ini, khususnya
hidroksiprolin, telah dilaporkan sebelumnya untuk A.
robusta dan A. Tortilis gusi (Churms & Stephen, 1984;
Gamon et al, 1986.). Di sisi lain, hidrolisis berurutan
dari fraksi ini dengan asam trifluoracetic, Tabel 2, menunjukkan
bahwa rhamnose hadir sebagai residu terminal di
struktur karbohidrat dari fraksi utama; Sementara itu,
kesulitan relatif untuk menghilangkan residu arabinosa
mungkin menyarankan posisi mereka sebagai residu internal. Penting
untuk dicatat bahwa hidroksiprolin, serin, dan arabinosa
telah terlibat dalam hubungan karbohidrat-protein,
dalam struktur banyak gusi (Akiyama et al, 1984;. Kieliszewski,
Kamyab, Leykam, & Lamport, 1992; Lamport &
Miller , 1971; Nothnagel, 1997; Qin, Yamauchi, Aizawa,
. Inakuma, & Kato, 2001)
Profil elusi, Gambar. 1, dibahas di atas, menurut
dengan adanya sistem heterogen yang kompleks seperti yang
telah diamati di beberapa Gummiferae dan Vulgares Acacia
gusi (Akiyama et al, 1984;. Al-Assaf et al, 2005;. Fauconnier
et al., 2000; Underwood & Cheetam, 1994).
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: