Assume that transistor, TR1 has just switched “OFF” and its collector  terjemahan - Assume that transistor, TR1 has just switched “OFF” and its collector  Bahasa Indonesia Bagaimana mengatakan

Assume that transistor, TR1 has jus

Assume that transistor, TR1 has just switched “OFF” and its collector voltage is rising towards Vcc, meanwhile transistor TR2 has just turned “ON”. Plate “A” of capacitor C1 is also rising towards the +6 volts supply rail of Vcc as it is connected to the collector of TR1. The other side of capacitor, C1, plate “B”, is connected to the base terminal of transistor TR2 and is at 0.6v because transistor TR2 is conducting therefore, capacitor C1 has a potential difference of 5.4 volts across it, 6.0 – 0.6v, (its high value of charge).

The instant that transistor, TR1 switches “ON”, plate “A” of the capacitor immediately falls to 0.6 volts. This fall of voltage on plate “A” causes an equal and instantaneous fall in voltage on plate “B” therefore plate “B” of the capacitor C1 is pulled down to -5.4v (a reverse charge) and this negative voltage turns transistor TR2 hard “OFF”. One unstable state.

Capacitor C1 now begins to charge in the opposite direction via resistor R3 which is also connected to the +6 volts supply rail, Vcc, thus the case of transistor TR2 is moving upwards in a positive direction towards Vcc with a time constant equal to the C1 x R3 combination.

However, it never reaches the value of Vcc because as soon as it gets to 0.6 volts positive, transistor TR2 turns fully “ON” into saturation starting the whole process over again but now with capacitor C2 taking the base of transistor TR1 to -5.4v while charging up via resistor R2 and entering the second unstable state. This process will repeat itself over and over again as long as the supply voltage is present.

The amplitude of the output waveform is approximately the same as the supply voltage, Vcc with the time period of each switching state determined by the time constant of the RC networks connected across the base terminals of the transistors. As the transistors are switching both “ON” and “OFF”, the output at either collector will be a square wave with slightly rounded corners because of the current which charges the capacitors. This could be corrected by using more components as we will discuss later.

If the two time constants produced by C2 x R2 and C1 x R3 in the base circuits are the same, the mark-to-space ratio ( t1/t2 ) will be equal to one-to-one making the output waveform symmetrical in shape. By varying the capacitors, C1, C2 or the resistors, R2, R3 the mark-to-space ratio and therefore the frequency can be altered.

We saw in the RC Discharging tutorial that the time taken for the voltage across a capacitor to fall to half the supply voltage, 0.5Vcc is equal to 0.69 time constants of the capacitor and resistor combination. Then taking one side of the astable multivibrator, the length of time that transistor TR2 is “OFF” will be equal to 0.69T or 0.69 times the time constant of C1 x R3. Likewise, the length of time that transistor TR1 is “OFF” will be equal to 0.69T or 0.69 times the time constant of C2 x R2 and this is defined as.

Astable Multivibrators Periodic Time
astable multivibrator periodic time

Where, R is in Ω’s and C in Farads.

By altering the time constant of just one RC network the mark-to-space ratio and frequency of the output waveform can be changed but normally by changing both RC time constants together at the same time, the output frequency will be altered keeping the mark-to-space ratios the same at one-to-one.

If the value of the capacitor C1 equals the value of the capacitor, C2, C1 = C2 and also the value of the base resistor R2 equals the value of the base resistor, R3, R2 = R3 then the total length of time of the Multivibrators cycle is given below for a symmetrical output waveform.
Frequency of Oscillation
astable multivibrator equation

Where, R is in Ω’s, C is in Farads, T is in seconds and ƒ is in Hertz.

and this is known as the “Pulse Repetition Frequency”. So Astable Multivibrators can produce TWO very short square wave output waveforms from each transistor or a much longer rectangular shaped output either symmetrical or non-symmetrical depending upon the time constant of the RC network as shown below.
Astable Multivibrator Waveforms

at a ratio of 1:5

astable waveform

Astable Multivibrator Example No1

An Astable Multivibrators circuit is required to produce a series of pulses at a frequency of 500Hz with a mark-to-space ratio of 1:5. If R2 = R3 = 100kΩ’s, calculate the values of the capacitors, C1 and C2 required.

astable multivibrator example


and by rearranging the formula above for the periodic time, the values of the capacitors required to give a mark-to-space ratio of 1:5 are given as:

astable multivibrator formula


The values of 4.83nF and 24.1nF respectively, are calculated values, so we would need to choose the nearest preferred values for C1 and C2 allowing for the capacitors tolerance. In fact due to the wide range of tolerances associated with the humble capacitor the actual output frequency may differ by as much as ±20%, (400 to 600Hz in our simple example) from the actual frequency needed.

If we require the output astable waveform to be non-symmetrical for use in timing or gating type circuits, etc, we could manually calculate the values of R and C for the individual components required as we did in the example above. However, when the two R’s and C´s are both equal, we can make our life a little bit easier for ourselves by using tables to show the astable multivibrators calculated frequencies for different combinations or values of both R and C. For example,
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Berasumsi bahwa transistor, TR1 telah baru saja beralih "OFF" dan tegangan kolektor yang meningkat terhadap Vcc, sedangkan transistor TR2 baru saja berubah "ON". Piring "A" kapasitor C1 juga meningkat menuju rel pasokan 6 volt dari Vcc sebagai terhubung ke kolektor dari TR1. Sisi lain dari kapasitor, C1, piring "B", terhubung ke terminal basis transistor TR2 dan di 0.6v karena transistor TR2 melakukan demikian, kapasitor C1 memiliki perbedaan yang potensial 5.4 volt di atasnya, 6.0-0.6v, (nilai tinggi biaya).Instan yang transistor, TR1 switch "ON", "A" kapasitor segera jatuh ke 0.6 volt piring. Musim gugur ini tegangan pada pelat "A" menyebabkan jatuh sama dan seketika tegangan pada pelat "B" karena itu piring "B" kapasitor C1 ditarik ke - 5.4v (reverse charge) dan tegangan negatif ini berubah transistor TR2 keras "OFF". Satu keadaan yang tidak stabil.Kapasitor C1 sekarang mulai mengisi dalam arah yang berlawanan melalui resistor R3 yang juga terhubung ke rel pasokan 6 volt, Vcc, sehingga kasus transistor TR2 bergerak ke atas dalam arah yang positif terhadap Vcc dengan konstanta waktu yang sama dengan kombinasi C1 x R3.Namun, tidak pernah mencapai nilai Vcc karena segera setelah itu sampai ke 0.6 volt positif, transistor TR2 berubah sepenuhnya "ON" menjadi jenuh memulai seluruh proses atas lagi, tapi sekarang dengan kapasitor C2 mengambil basis transistor TR1 ke - 5.4v sementara pengisian melalui resistor R2 dan memasuki kedua negara tidak stabil. Proses ini akan mengulangi sendiri berulang-ulang selama tegangan suplai hadir.Amplitudo dari gelombang output adalah kira-kira sama dengan tegangan suplai, Vcc dengan jangka waktu setiap beralih negara ditentukan oleh waktu yang konstan jaringan RC terhubung di seluruh terminal basis transistor. Seperti transistor berpindah keduanya "ON" dan "OFF", output di kolektor baik akan gelombang persegi dengan sedikit lengkung karena arus yang biaya kapasitor. Ini bisa diperbaiki dengan menggunakan komponen lain seperti yang akan kita bahas nanti.Jika waktu dua konstanta yang diproduksi oleh C2 x R2 dan R3 x C1 dalam sirkuit dasar yang sama, mark-untuk-ruang rasio (t1/t2) akan sama dengan satu-satu membuat gelombang output simetris dalam bentuk. Dengan memvariasikan kapasitor, C1, C2 atau resistor, R2, R3 rasio mark-untuk-ruang dan oleh karena itu frekuensi dapat diubah.Kita lihat dalam tutorial RC pemakaian bahwa masa yang diambil untuk tegangan di kapasitor untuk jatuh ke setengah tegangan suplai, 0.5Vcc sama dengan konstanta waktu 0,69 kombinasi kapasitor dan resistor. Kemudian mengambil satu sisi dari multivibrator astable, lamanya waktu itu transistor TR2 adalah "OFF" akan sama dengan 0.69T atau 0,69 kali waktu konstan C1 x R3. Demikian juga, panjang waktu itu transistor TR1 adalah "OFF" akan menjadi sama dengan 0.69T atau 0,69 kali waktu yang konstan C2 x R2 dan ini didefinisikan sebagai.Astable Multivibrators waktu berkalaastable multivibrator waktu berkalaDimana, R adalah di Ω's dan C dalam Farads.Dengan mengubah konstanta waktu hanya satu RC jaringan rasio mark ke angkasa dan frekuensi gelombang output dapat berubah tetapi biasanya dengan mengubah konstanta waktu RC kedua bersama-sama pada saat yang sama, frekuensi output akan diubah menjaga rasio mark-untuk-ruang yang sama pada satu-satu.Jika nilai kapasitor C1 sama dengan nilai kapasitor, C2, C1 = C2 dan juga nilai resistor basis R2 sederajat nilai resistor basis, R3, R2 = R3 maka total panjang waktu siklus Multivibrators diberikan di bawah ini untuk gelombang simetris output.Frekuensi osilasipersamaan multivibrator astableDimana, R di Ω's, C adalah di Farads, T adalah dalam detik dan ƒ adalah dalam satuan Hertz.dan ini dikenal sebagai "Pulse pengulangan frekuensi". Sehingga Astable Multivibrators dapat menghasilkan dua sangat pendek gelombang persegi output bentuk gelombang dari transistor setiap atau banyak lagi persegi berbentuk output simetris atau non-simetris tergantung pada waktu yang konstan RC jaringan seperti ditunjukkan di bawah.Astable Multivibrator bentuk gelombangpada rasio 1:5gelombang astable Astable Multivibrator contoh No1Sirkuit Astable Multivibrators diperlukan untuk memproduksi serangkaian pulsa di frekuensi 500Hz dengan perbandingan 1:5 tanda ke angkasa. Jika R2 = R3 = 100kΩ, menghitung nilai-nilai kapasitor, C1 dan C2 diperlukan.contoh multivibrator astable dan dengan mengatur rumus di atas untuk waktu berkala, nilai-nilai kapasitor yang diperlukan untuk memberikan rasio 1:5 tanda di-ruang diberi sebagai:astable multivibrator formula Nilai-nilai 4.83nF dan 24.1nF masing-masing, adalah nilai-nilai yang dihitung, jadi kita akan perlu untuk memilih terdekat disukai nilai untuk C1 dan C2 memungkinkan untuk toleransi kapasitor. Bahkan karena berbagai macam toleransi yang terkait dengan rendah hati kapasitor frekuensi output aktual mungkin berbeda oleh sebanyak ±20%, (400-600 Hz dalam contoh sederhana) dari frekuensi sebenarnya diperlukan.Jika kita memerlukan output astable gelombang untuk menjadi bebas-simetris untuk digunakan dalam waktu atau gating jenis sirkuit, dll, kami secara manual dapat menghitung nilai R dan C untuk masing-masing komponen yang diperlukan seperti yang kami lakukan dalam contoh di atas. Namun, ketika dua R dan C´s yang keduanya sama, kita bisa membuat hidup sedikit lebih mudah untuk diri kita sendiri dengan menggunakan tabel untuk menunjukkan astable multivibrators menghitung frekuensi untuk kombinasi yang berbeda atau nilai-nilai R dan C. Misalnya,
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Assume that transistor, TR1 has just switched “OFF” and its collector voltage is rising towards Vcc, meanwhile transistor TR2 has just turned “ON”. Plate “A” of capacitor C1 is also rising towards the +6 volts supply rail of Vcc as it is connected to the collector of TR1. The other side of capacitor, C1, plate “B”, is connected to the base terminal of transistor TR2 and is at 0.6v because transistor TR2 is conducting therefore, capacitor C1 has a potential difference of 5.4 volts across it, 6.0 – 0.6v, (its high value of charge).

The instant that transistor, TR1 switches “ON”, plate “A” of the capacitor immediately falls to 0.6 volts. This fall of voltage on plate “A” causes an equal and instantaneous fall in voltage on plate “B” therefore plate “B” of the capacitor C1 is pulled down to -5.4v (a reverse charge) and this negative voltage turns transistor TR2 hard “OFF”. One unstable state.

Capacitor C1 now begins to charge in the opposite direction via resistor R3 which is also connected to the +6 volts supply rail, Vcc, thus the case of transistor TR2 is moving upwards in a positive direction towards Vcc with a time constant equal to the C1 x R3 combination.

However, it never reaches the value of Vcc because as soon as it gets to 0.6 volts positive, transistor TR2 turns fully “ON” into saturation starting the whole process over again but now with capacitor C2 taking the base of transistor TR1 to -5.4v while charging up via resistor R2 and entering the second unstable state. This process will repeat itself over and over again as long as the supply voltage is present.

The amplitude of the output waveform is approximately the same as the supply voltage, Vcc with the time period of each switching state determined by the time constant of the RC networks connected across the base terminals of the transistors. As the transistors are switching both “ON” and “OFF”, the output at either collector will be a square wave with slightly rounded corners because of the current which charges the capacitors. This could be corrected by using more components as we will discuss later.

If the two time constants produced by C2 x R2 and C1 x R3 in the base circuits are the same, the mark-to-space ratio ( t1/t2 ) will be equal to one-to-one making the output waveform symmetrical in shape. By varying the capacitors, C1, C2 or the resistors, R2, R3 the mark-to-space ratio and therefore the frequency can be altered.

We saw in the RC Discharging tutorial that the time taken for the voltage across a capacitor to fall to half the supply voltage, 0.5Vcc is equal to 0.69 time constants of the capacitor and resistor combination. Then taking one side of the astable multivibrator, the length of time that transistor TR2 is “OFF” will be equal to 0.69T or 0.69 times the time constant of C1 x R3. Likewise, the length of time that transistor TR1 is “OFF” will be equal to 0.69T or 0.69 times the time constant of C2 x R2 and this is defined as.

Astable Multivibrators Periodic Time
astable multivibrator periodic time

Where, R is in Ω’s and C in Farads.

By altering the time constant of just one RC network the mark-to-space ratio and frequency of the output waveform can be changed but normally by changing both RC time constants together at the same time, the output frequency will be altered keeping the mark-to-space ratios the same at one-to-one.

If the value of the capacitor C1 equals the value of the capacitor, C2, C1 = C2 and also the value of the base resistor R2 equals the value of the base resistor, R3, R2 = R3 then the total length of time of the Multivibrators cycle is given below for a symmetrical output waveform.
Frequency of Oscillation
astable multivibrator equation

Where, R is in Ω’s, C is in Farads, T is in seconds and ƒ is in Hertz.

and this is known as the “Pulse Repetition Frequency”. So Astable Multivibrators can produce TWO very short square wave output waveforms from each transistor or a much longer rectangular shaped output either symmetrical or non-symmetrical depending upon the time constant of the RC network as shown below.
Astable Multivibrator Waveforms

at a ratio of 1:5

astable waveform

Astable Multivibrator Example No1

An Astable Multivibrators circuit is required to produce a series of pulses at a frequency of 500Hz with a mark-to-space ratio of 1:5. If R2 = R3 = 100kΩ’s, calculate the values of the capacitors, C1 and C2 required.

astable multivibrator example


and by rearranging the formula above for the periodic time, the values of the capacitors required to give a mark-to-space ratio of 1:5 are given as:

astable multivibrator formula


The values of 4.83nF and 24.1nF respectively, are calculated values, so we would need to choose the nearest preferred values for C1 and C2 allowing for the capacitors tolerance. In fact due to the wide range of tolerances associated with the humble capacitor the actual output frequency may differ by as much as ±20%, (400 to 600Hz in our simple example) from the actual frequency needed.

If we require the output astable waveform to be non-symmetrical for use in timing or gating type circuits, etc, we could manually calculate the values of R and C for the individual components required as we did in the example above. However, when the two R’s and C´s are both equal, we can make our life a little bit easier for ourselves by using tables to show the astable multivibrators calculated frequencies for different combinations or values of both R and C. For example,
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: