3. Decision Support for Healthcare DiagnosisDiagnosis errors (includin terjemahan - 3. Decision Support for Healthcare DiagnosisDiagnosis errors (includin Bahasa Indonesia Bagaimana mengatakan

3. Decision Support for Healthcare

3. Decision Support for Healthcare Diagnosis
Diagnosis errors (including missed, wrong, or delayed diagnosis) are a frequent and serious problem in the
healthcare industry. It is estimated that such errors result in death or permanent injury for up to 160,000 U.S.
patients each year. In a recent Johns Hopkins University study examining malpractice claims, researchers found
that claim payments for diagnostic errors added up to $38.8 billion over the time period 1986 to 2010.89 Failure
to fully diagnose a patient’s condition puts the patient at risk of suffering a recurrence of the problem—such as
incurring further damage from another accident caused by, for example, an undiagnosed brain injury.
Misdiagnosis of a patient’s condition can lead to costly, painful, potentially harmful, and inappropriate treatments.
A delay in the diagnosis of a patient can allow an otherwise reversible condition to advance to the point that it is
no longer treatable.
Over the past decade, several decision support systems to aid in healthcare diagnosis have been developed,
including DiagnosisPro®, DXPlain®, First Consult©, PEPID, and Isabel©. A decision support system is an
interactive computer application that aids in decision making by gathering data from a wide range of sources and
presenting that data in a way that aids in decision making. Isabel, one of the more advanced healthcare decision
support systems, is a Web-based system developed in the United Kingdom. Isabel uses key facts from the
patient’s history, physical exam, and laboratory findings to identify the most likely diagnosis based on pattern
matches in the system’s database. The system can interface with electronic medical records systems to obtain
patient data, or the data can be entered manually. Each diagnosis is linked to information in commonly used
medical reference sources such as The 5 Minute Clinical Consult, Oxford Textbook of Medicine, and Medline—
the U.S. National Laboratory of Medicine’s online bibliographic database. Isabel can also suggest bioterrorism
agents that might be responsible for a patient’s symptoms, as well as identify drugs or drug combinations that
might be the cause.90 The cost of using Isabel ranges from a few thousand dollars for a family practice to as much
as $400,000 for a health system.91
United Hospital, a large hospital in St. Paul, Minnesota, recently implemented the Isabel system to help
physicians investigate and diagnose patient cases. The system will integrate directly with the hospital’s electronic
medical record system and physicians will be able to access Isabel from mobile devices.92
On another front, medical researchers at Memorial Sloan-Kettering Cancer Center in New York are busy
feeding data from medical textbooks and journals into IBM’s Watson supercomputer to create a world-class
healthcare diagnostic tool. Watson is the same supercomputer that gained recognition in 2011 for beating the
world’s best players on the TV game show Jeopardy!. Watson is now being programmed to understand plain
language so that it can absorb data about a patient’s symptoms and medical history, form a diagnosis, and suggest
an appropriate course of treatment. When presented with a set of symptoms, Watson will be able to provide
several diagnoses, ranked in order of its confidence.93,94 One incentive hospitals have to adopt such systems is
concern that a failure to adopt new
technology could subject the hospital to liability in cases where it could be shown that adoption of the technology
would not have been overly costly and could have prevented patient injury.95
Discussion Questions
1. What concerns might a physician have about using a decision support system such as Isabel or Watson to make
a medical diagnosis? How might those concerns be alleviated?
2. Is it possible that in a decade this type of technology could be easily accessible by laypeople who could then
perform self-diagnosis, thus helping to reduce the cost of medical care?
3. Does the use of decision support systems to support healthcare decisions seem like an effective way to reduce healthcare costs? Why or why not?
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
3. Decision Support for Healthcare DiagnosisDiagnosis errors (including missed, wrong, or delayed diagnosis) are a frequent and serious problem in thehealthcare industry. It is estimated that such errors result in death or permanent injury for up to 160,000 U.S.patients each year. In a recent Johns Hopkins University study examining malpractice claims, researchers foundthat claim payments for diagnostic errors added up to $38.8 billion over the time period 1986 to 2010.89 Failureto fully diagnose a patient’s condition puts the patient at risk of suffering a recurrence of the problem—such asincurring further damage from another accident caused by, for example, an undiagnosed brain injury.Misdiagnosis of a patient’s condition can lead to costly, painful, potentially harmful, and inappropriate treatments.A delay in the diagnosis of a patient can allow an otherwise reversible condition to advance to the point that it isno longer treatable.Over the past decade, several decision support systems to aid in healthcare diagnosis have been developed,including DiagnosisPro®, DXPlain®, First Consult©, PEPID, and Isabel©. A decision support system is aninteractive computer application that aids in decision making by gathering data from a wide range of sources andpresenting that data in a way that aids in decision making. Isabel, one of the more advanced healthcare decisionsupport systems, is a Web-based system developed in the United Kingdom. Isabel uses key facts from thepatient’s history, physical exam, and laboratory findings to identify the most likely diagnosis based on patternmatches in the system’s database. The system can interface with electronic medical records systems to obtainpatient data, or the data can be entered manually. Each diagnosis is linked to information in commonly usedmedical reference sources such as The 5 Minute Clinical Consult, Oxford Textbook of Medicine, and Medline—the U.S. National Laboratory of Medicine’s online bibliographic database. Isabel can also suggest bioterrorismagents that might be responsible for a patient’s symptoms, as well as identify drugs or drug combinations thatmight be the cause.90 The cost of using Isabel ranges from a few thousand dollars for a family practice to as muchas $400,000 for a health system.91United Hospital, a large hospital in St. Paul, Minnesota, recently implemented the Isabel system to helpphysicians investigate and diagnose patient cases. The system will integrate directly with the hospital’s electronicmedical record system and physicians will be able to access Isabel from mobile devices.92On another front, medical researchers at Memorial Sloan-Kettering Cancer Center in New York are busyfeeding data from medical textbooks and journals into IBM’s Watson supercomputer to create a world-classhealthcare diagnostic tool. Watson is the same supercomputer that gained recognition in 2011 for beating theworld’s best players on the TV game show Jeopardy!. Watson is now being programmed to understand plainlanguage so that it can absorb data about a patient’s symptoms and medical history, form a diagnosis, and suggestan appropriate course of treatment. When presented with a set of symptoms, Watson will be able to provideseveral diagnoses, ranked in order of its confidence.93,94 One incentive hospitals have to adopt such systems isconcern that a failure to adopt newtechnology could subject the hospital to liability in cases where it could be shown that adoption of the technologywould not have been overly costly and could have prevented patient injury.95Discussion Questions1. What concerns might a physician have about using a decision support system such as Isabel or Watson to makea medical diagnosis? How might those concerns be alleviated?2. Is it possible that in a decade this type of technology could be easily accessible by laypeople who could thenperform self-diagnosis, thus helping to reduce the cost of medical care?3. Does the use of decision support systems to support healthcare decisions seem like an effective way to reduce healthcare costs? Why or why not?
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
3. Keputusan Dukungan untuk Kesehatan Diagnosis
kesalahan Diagnosis (termasuk terjawab, salah, atau diagnosis tertunda) adalah masalah yang sering dan serius dalam
industri kesehatan. Diperkirakan bahwa kesalahan tersebut mengakibatkan kematian atau cedera permanen hingga 160.000 US
pasien setiap tahun. Dalam baru-baru ini Johns Hopkins University studi meneliti klaim malpraktek, peneliti menemukan
bahwa pembayaran klaim untuk kesalahan diagnostik menambahkan hingga $ 38800000000 selama periode waktu 1986-2010,89 Kegagalan
untuk sepenuhnya mendiagnosa kondisi pasien menempatkan pasien beresiko menderita kambuhnya masalah -seperti
menimbulkan kerusakan lebih lanjut dari kecelakaan lain yang disebabkan oleh, misalnya, cedera otak tidak terdiagnosis.
Misdiagnosis dari kondisi pasien dapat mengarah pada pengobatan yang mahal, menyakitkan, berpotensi berbahaya, dan tidak pantas.
Sebuah keterlambatan dalam diagnosis pasien dapat memungkinkan jika kondisi reversibel untuk maju ke titik bahwa itu adalah
tidak lagi diobati.
Selama satu dekade terakhir, beberapa sistem pendukung keputusan untuk membantu dalam diagnosis kesehatan telah dikembangkan,
termasuk DiagnosisPro®, DXPlain®, Pertama Konsultasikan ©, PEPID, dan Isabel ©. Sebuah sistem pendukung keputusan adalah sebuah
aplikasi komputer interaktif yang membantu dalam pengambilan keputusan dengan mengumpulkan data dari berbagai sumber dan
menyajikan data bahwa dalam cara yang membantu dalam pengambilan keputusan. Isabel, salah satu keputusan kesehatan yang lebih maju
sistem pendukung, adalah sistem berbasis web yang dikembangkan di Inggris. Isabel menggunakan fakta-fakta kunci dari
sejarah pasien, pemeriksaan fisik, dan temuan laboratorium untuk mengidentifikasi diagnosis yang paling mungkin berdasarkan pola
cocok dalam database sistem. Sistem ini dapat antarmuka dengan sistem elektronik catatan medis untuk mendapatkan
data pasien, atau data dapat dimasukkan secara manual. Setiap diagnosis terkait dengan informasi dalam umum digunakan
sumber-sumber referensi medis seperti The 5 Menit Klinis Konsultasikan, Oxford Textbook of Medicine, dan Medline-
US National Laboratory of Medicine ini basis data bibliografi online. Isabel juga dapat menyarankan bioterorisme
agen yang mungkin bertanggung jawab untuk gejala pasien, serta mengidentifikasi obat atau kombinasi obat yang
mungkin cause.90 Biaya menggunakan Isabel berkisar dari beberapa ribu dolar untuk praktek keluarga untuk sebanyak
sebagai $ 400,000 untuk kesehatan system.91
Inggris Hospital, sebuah rumah sakit besar di St Paul, Minnesota, baru-baru ini menerapkan sistem Isabel untuk membantu
dokter menyelidiki dan mendiagnosa kasus pasien. Sistem ini akan mengintegrasikan langsung dengan elektronik rumah sakit
sistem rekam medis dan dokter akan dapat mengakses Isabel dari devices.92 ponsel
Pada sisi lain, para peneliti medis di Memorial Sloan-Kettering Cancer Center di New York sibuk
Data makan dari buku teks kedokteran dan jurnal ke IBM Watson superkomputer untuk membuat kelas dunia
alat diagnostik kesehatan. Watson adalah superkomputer yang sama yang mendapat pengakuan di 2011 untuk mengalahkan
pemain terbaik dunia di TV game show Jeopardy !. Watson sekarang sedang diprogram untuk memahami polos
bahasa sehingga dapat menyerap data tentang gejala pasien dan riwayat medis, membentuk diagnosis, dan menyarankan
kursus yang tepat pengobatan. Ketika disajikan dengan satu set gejala, Watson akan dapat memberikan
beberapa diagnosa, peringkat di urutan rumah sakit confidence.93,94 Satu insentif telah mengadopsi sistem tersebut adalah
kekhawatiran bahwa kegagalan untuk mengadopsi baru
teknologi bisa tunduk rumah sakit untuk kewajiban dalam kasus di mana itu bisa menunjukkan bahwa adopsi teknologi
tidak akan terlalu mahal dan bisa mencegah pasien injury.95
Pertanyaan Diskusi
1. Kekhawatiran apa yang mungkin dokter memiliki sekitar menggunakan sistem pendukung keputusan seperti Isabel atau Watson untuk membuat
diagnosis medis? Bagaimana mungkin kekhawatiran mereka dikurangi?
2. Apakah mungkin bahwa dalam satu dekade ini jenis teknologi bisa diakses oleh orang awam dengan mudah yang kemudian bisa
melakukan self-diagnosis, sehingga membantu untuk mengurangi biaya perawatan medis?
3. Apakah penggunaan sistem pendukung keputusan untuk mendukung keputusan kesehatan tampak seperti cara yang efektif untuk mengurangi biaya kesehatan? Mengapa atau mengapa tidak?
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: