that chymotrypsin (and trypsin), which were thus far considered as ‘pr terjemahan - that chymotrypsin (and trypsin), which were thus far considered as ‘pr Bahasa Indonesia Bagaimana mengatakan

that chymotrypsin (and trypsin), wh

that chymotrypsin (and trypsin), which were thus far considered as ‘proteinases’ specifically splitting large proteins, were actually able to cleave ‘internal’ peptide bonds of short peptides also. Bergmann & Fruton[16] also found that various ester and amide derivatives of the
chymotrypsin-specific amino acids were also hydrolyzed effectively by the enzyme. Chymotrypsin A, either theα or the γ form, was investigated most extensively, but some comparative activity and specificity studies were also carried out with other variants. It was agreed that
chymotrypsin Aπis the most active form, and that further autolysis results in a gradual decrease of the catalytic activity[12,14]. It was also noted that chymotrypsin B, in
sharp contrast with chymotrypsin A, splits acyl-tryptophan esters very slowly[20]. Indeed, our recent comparison of the substrate specificities of cattle chymotrypsin A and recombinant rat chymotrypsin B has revealed that the former is about 100-fold more active on the substrate
Suc-Ala-Ala-Pro- Trp-NHMec (see below) than rat chymotrypsin B (Huda´ky, P., Kaslik, G., Szila´gyi, L., Venekei, I., Gra´f, L. unpublished results). The hydrolysis of amide and ester substrates by chymotrypsin is a three-step process in which an enzyme substrate complex and an acyl enzyme intermediate are formed [21] (Figure 582.2). The first evidence for this
mechanism was reported by Hartley & Kilby[22] who observed a rapid initial burst in the liberation ofp-nitrophenol when chymotrypsin was mixed with excess p-nitrophenyl acetate or p-nitrophenyl ethyl carbonate. They postulated that initially the ester rapidly acylated
the enzyme in a mole-to-mole ratio, and that the rate of subsequent substrate turnover was limited by the slow hydrolytic deacylation of the enzyme. The existence of the acyl enzyme intermediate was ultimately proven by the isolation and crystallization of several
stable forms such as indolylacryloyl-chymotrypsin [23], tosyl-chymotrypsin (2CHA; [24])and two photoreversible cinnamoyl-chymotrypsins[25]. This later work is especially interesting because, due to the special structure of the bound inhibitor, light-induced cistrans isomerization
increases the rate of deacylation by several orders of magnitude. Photoirradiaton of the inhibited chymotrypsin crystals triggers deacylation, so that the process can be directly studied by X-ray crystallography [26]. Furthermore, the formation of acyl enzyme intermediates in the pathway of amide hydrolysis was also deduced by nucleophile partitioning experiments[27]. Recently, careful analysis of the X-ray structure of γ-chymotrypsin has Slow Cys 1 Asn 245 Cys
1 Chymotrypsinogen autolysis activation activation and autolysis Tyr Neochymotrypsinogen
Ala 146 149 Asn 245 Cys 1 Tyr α-Chymotrypsin Ala 146 149 Leu Ile 13 16 Asn 245 Fast autolysis autolysis Cys 1 Tyr γ-Chymotrypsin Ala 146 149 Leu Ile 13 16 Asn 245 Cys 1 δ-Chymotrypsin
π-Chymotrypsin Leu Ile 13 16 Asn 245 Cys 1 Arg Ile 15 16 Asn 245 FIGURE 582.1 ‘Slow’ and ‘fast’ activation of chymotrypsinogen. E-OH + RCOX E-OH.RCOX E-OH + RCOOH H2O k3 E-OC k2 XH
k+1
k–1
O
R
FIGURE 582.2 Kinetic scheme of chymotrypsin action. In a rapid equilibrium process (Ks5k11
/k1) the enzyme forms a Michaelis complex with an amide or ester substrate which is cleaved in the next step (characterized by rate constantk2) to form an acyl-enzyme intermediate and an amide or alcohol. The rate constant of the hydrolysis of the acyl-enzyme isk3.
2627 Clan PAS1 |582. Chymotrypsin revealed that this form is an acyl enzyme complex of
α-chymotrypsin with its autolysis product (Dixon & Matthews[28]: structure 1GCT; Dixon etal.[29]: structures 2GCT, 3GCT; Hareletal.[30]: structure 8GCH).In hexane,the tetrahedral intermediate of the reaction was also observed (Yennawaret al.[31]: 1GCM).
Besidestheir theoretical importance, burst substrates offer a simple and convenient way to determine the concentration of active enzyme by active site titration.
Initially, various p-nitrophenyl esters were used for this purpose, but more recently, substances with fluorogenic leaving groups, such as 4-methyl-umbelliferyl p-(N,N,N,-triethylammonium) cinnamate [32] havebeen developed, which provide a significantly higher sensitivity (2050 pmol). A recently described active-site titration of chymotrypsin withα2-macroglobulin and HPLC may estimate proteinase activity with as little as 510 pmol
enzyme[33]. In the course of sequence analysis studies, chymotrypticdigests of many peptides and proteins have been examined in detail. In addition to hydrolysis at aromatic amino
acids and leucine, hydrolysis of bonds formed by asparagine, cysteic acid, glutamine, glycine, histidine, isoleucine, lysine, serine, threonine and valine have also been found.
Cleavage at these sites was not extensive, however, and depended strongly on the P1
0 residue ([34], and references therein). Chymotrypsin does not hydrolyze bonds formed
to the imino group of proline in proteins. Schellenberger et al. (1991) [35]performed quantitative structure/activity analysis of all available quantitative data on the chymotrypsin-catalyzed hydrolysis of amino acid and short peptide substrates. The substrates in the database span a range from the P5 to P3 0 positions. It was found that parameters for the P5, P4 and P3
0 subsites could be omitted from the calculations, which implied that interactions at these sites did not contribute significantly to the catalytic efficiency of chymotrypsin. The calculated P1 contributions to log (kcat/Km) gave linear correlation to the molar refraction of
the P1 side chain. (Molar refraction is the measure of the volume and polarizability of a substituent.) Substrate specificity mapping using all 400 possible dipeptides in membrane-bound form gave similar results[36]. The most common and convenient analytical technique for activity determination is spectrophotometry withp-nitroaniline as leaving group. Commercially available substrates include Suc-Phe-NHPhNO2 [37] and SucAla-Ala-Pro-Phe-NHPhNO2 [38]. Greater sensitivity can be achieved either by a fluorogenic leaving group (e.g. Suc-Ala-Ala-Pro-Phe-NHMec), with highly reactive thiobenzyl esters (Suc-Ala-Ala-Pro-Phe-SBzl; [39]) or with bioluminescence substrates like 6-(N-acetyl-L-phenylalanyl)-aminoluciferin[40]. Proline is commonly present at the P2 position in commerciallyavailable synthetic substrates (e.g. Suc-AlaAla-Pro-Phe-NHPhNO2). Depending on pH and temperature, about 85% of the Ala-Pro bond is trans, providing a good substrate for chymotrypsin, whereas thecisform is not a substrate. The activity of peptidylprolylcistrans isomerase can therefore be measured in a coupled assay
with chymotrypsin[41,42]. Chymotrypsin is inhibited by general serine peptidase
inhibitors such as DFP [43], PMSF[44], DCI[45], leupeptin and chymostatin[46]. There are numerous naturally occurring protein inhibitors including turkey ovomucoid third domain[47], aprotinin [48], various serpins, marinostatin[49] and eglin c[50]. Novel synthetic
inhibitors include Z-Ala-Pro-Phe-glyoxal (Ki519 nm) and Z-Ala-Ala-Phe-glyoxal (Ki5344 nm) [51,52].The peptide IIe-Val-Asn-Gly-Glu-Glu-Ala-Val-Pro-Gly-SerTrp-Pro-Trp, corresponding to the N-terminal 14-mer of mature chymotrypsin A, is a highly potent, competitive
inhibitor [53]. Structural Chemistry Three amino acid residues, His57, Asp102 and Ser195,
the catalytic triad, are essential for peptide bond cleavage.
They are located at the entrance of a substrate-binding
pocket and their conservative arrangement is stabilized by
hydrogen bonds. These three amino acids are highly conserved in the sequences of the peptidases of family S1 (Chapter 559). A serine at position 214 is also highly conserved in the family, being present in all but three of almost 200 homologous bacterial and mammalian serine
proteinases [54,55,56]. Ser214 is hydrogen bonded to Asp102 and to the main-chain nitrogen atom of the scissile bond in the substrate. This residue contributes significantly to the polar environment that stabilizes the charge of the buried Asp102. A mutagenesis study performed on
trypsin supported the importance of the Ser214 function. This result and the invariance of this residue throughout the family led to the proposal that this residue might be considered as a fourth member of the catalytic triad[57]. The peptide amido groups of Gly193 and Ser195, in the
structural unit called the oxyanion hole, have important hydrogen bond donating interactions with the carbonyl group of the scissile peptide bond. These interactions are indispensable for catalysis since they orient the scissile bond NH to His57 and Ser195[58], initiating the formation of the tetrahedral intermediate. In the course of this process they dissipate the negative charge developing on the scissile bond carbonyl oxygen [15,59]. The interactions between the Sn,..S2, S1,S1 0 ,S2 0 ,..Sn 0 sites of the enzyme and the Pn,..P2, P1, P1
0 ,P20 ,..Pn 0 amino acid residues of the substrate ensure the precise alignment of the substrate to the catalytic triad and the oxyanion hole, and thereby the selectivity of catalysis.
5000/5000
Dari: Inggris
Ke: Bahasa Indonesia
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
that chymotrypsin (and trypsin), which were thus far considered as ‘proteinases’ specifically splitting large proteins, were actually able to cleave ‘internal’ peptide bonds of short peptides also. Bergmann & Fruton[16] also found that various ester and amide derivatives of thechymotrypsin-specific amino acids were also hydrolyzed effectively by the enzyme. Chymotrypsin A, either theα or the γ form, was investigated most extensively, but some comparative activity and specificity studies were also carried out with other variants. It was agreed thatchymotrypsin Aπis the most active form, and that further autolysis results in a gradual decrease of the catalytic activity[12,14]. It was also noted that chymotrypsin B, insharp contrast with chymotrypsin A, splits acyl-tryptophan esters very slowly[20]. Indeed, our recent comparison of the substrate specificities of cattle chymotrypsin A and recombinant rat chymotrypsin B has revealed that the former is about 100-fold more active on the substrateSuc-Ala-Ala-Pro- Trp-NHMec (see below) than rat chymotrypsin B (Huda´ky, P., Kaslik, G., Szila´gyi, L., Venekei, I., Gra´f, L. unpublished results). The hydrolysis of amide and ester substrates by chymotrypsin is a three-step process in which an enzyme substrate complex and an acyl enzyme intermediate are formed [21] (Figure 582.2). The first evidence for thismechanism was reported by Hartley & Kilby[22] who observed a rapid initial burst in the liberation ofp-nitrophenol when chymotrypsin was mixed with excess p-nitrophenyl acetate or p-nitrophenyl ethyl carbonate. They postulated that initially the ester rapidly acylatedthe enzyme in a mole-to-mole ratio, and that the rate of subsequent substrate turnover was limited by the slow hydrolytic deacylation of the enzyme. The existence of the acyl enzyme intermediate was ultimately proven by the isolation and crystallization of severalstable forms such as indolylacryloyl-chymotrypsin [23], tosyl-chymotrypsin (2CHA; [24])and two photoreversible cinnamoyl-chymotrypsins[25]. This later work is especially interesting because, due to the special structure of the bound inhibitor, light-induced cistrans isomerizationincreases the rate of deacylation by several orders of magnitude. Photoirradiaton of the inhibited chymotrypsin crystals triggers deacylation, so that the process can be directly studied by X-ray crystallography [26]. Furthermore, the formation of acyl enzyme intermediates in the pathway of amide hydrolysis was also deduced by nucleophile partitioning experiments[27]. Recently, careful analysis of the X-ray structure of γ-chymotrypsin has Slow Cys 1 Asn 245 Cys1 Chymotrypsinogen autolysis activation activation and autolysis Tyr NeochymotrypsinogenAla 146 149 Asn 245 Cys 1 Tyr α-Chymotrypsin Ala 146 149 Leu Ile 13 16 Asn 245 Fast autolysis autolysis Cys 1 Tyr γ-Chymotrypsin Ala 146 149 Leu Ile 13 16 Asn 245 Cys 1 δ-Chymotrypsinπ-Chymotrypsin Leu Ile 13 16 Asn 245 Cys 1 Arg Ile 15 16 Asn 245 FIGURE 582.1 ‘Slow’ and ‘fast’ activation of chymotrypsinogen. E-OH + RCOX E-OH.RCOX E-OH + RCOOH H2O k3 E-OC k2 XHk+1k–1ORFIGURE 582.2 Kinetic scheme of chymotrypsin action. In a rapid equilibrium process (Ks5k11/k1) the enzyme forms a Michaelis complex with an amide or ester substrate which is cleaved in the next step (characterized by rate constantk2) to form an acyl-enzyme intermediate and an amide or alcohol. The rate constant of the hydrolysis of the acyl-enzyme isk3.2627 Clan PAS1 |582. Chymotrypsin revealed that this form is an acyl enzyme complex ofα-chymotrypsin with its autolysis product (Dixon & Matthews[28]: structure 1GCT; Dixon etal.[29]: structures 2GCT, 3GCT; Hareletal.[30]: structure 8GCH).In hexane,the tetrahedral intermediate of the reaction was also observed (Yennawaret al.[31]: 1GCM).Besidestheir theoretical importance, burst substrates offer a simple and convenient way to determine the concentration of active enzyme by active site titration.Initially, various p-nitrophenyl esters were used for this purpose, but more recently, substances with fluorogenic leaving groups, such as 4-methyl-umbelliferyl p-(N,N,N,-triethylammonium) cinnamate [32] havebeen developed, which provide a significantly higher sensitivity (2050 pmol). A recently described active-site titration of chymotrypsin withα2-macroglobulin and HPLC may estimate proteinase activity with as little as 510 pmolenzyme[33]. In the course of sequence analysis studies, chymotrypticdigests of many peptides and proteins have been examined in detail. In addition to hydrolysis at aromatic aminoacids and leucine, hydrolysis of bonds formed by asparagine, cysteic acid, glutamine, glycine, histidine, isoleucine, lysine, serine, threonine and valine have also been found.Cleavage at these sites was not extensive, however, and depended strongly on the P10 residue ([34], and references therein). Chymotrypsin does not hydrolyze bonds formedto the imino group of proline in proteins. Schellenberger et al. (1991) [35]performed quantitative structure/activity analysis of all available quantitative data on the chymotrypsin-catalyzed hydrolysis of amino acid and short peptide substrates. The substrates in the database span a range from the P5 to P3 0 positions. It was found that parameters for the P5, P4 and P30 subsites could be omitted from the calculations, which implied that interactions at these sites did not contribute significantly to the catalytic efficiency of chymotrypsin. The calculated P1 contributions to log (kcat/Km) gave linear correlation to the molar refraction ofthe P1 side chain. (Molar refraction is the measure of the volume and polarizability of a substituent.) Substrate specificity mapping using all 400 possible dipeptides in membrane-bound form gave similar results[36]. The most common and convenient analytical technique for activity determination is spectrophotometry withp-nitroaniline as leaving group. Commercially available substrates include Suc-Phe-NHPhNO2 [37] and SucAla-Ala-Pro-Phe-NHPhNO2 [38]. Greater sensitivity can be achieved either by a fluorogenic leaving group (e.g. Suc-Ala-Ala-Pro-Phe-NHMec), with highly reactive thiobenzyl esters (Suc-Ala-Ala-Pro-Phe-SBzl; [39]) or with bioluminescence substrates like 6-(N-acetyl-L-phenylalanyl)-aminoluciferin[40]. Proline is commonly present at the P2 position in commerciallyavailable synthetic substrates (e.g. Suc-AlaAla-Pro-Phe-NHPhNO2). Depending on pH and temperature, about 85% of the Ala-Pro bond is trans, providing a good substrate for chymotrypsin, whereas thecisform is not a substrate. The activity of peptidylprolylcistrans isomerase can therefore be measured in a coupled assaywith chymotrypsin[41,42]. Chymotrypsin is inhibited by general serine peptidaseinhibitors such as DFP [43], PMSF[44], DCI[45], leupeptin and chymostatin[46]. There are numerous naturally occurring protein inhibitors including turkey ovomucoid third domain[47], aprotinin [48], various serpins, marinostatin[49] and eglin c[50]. Novel syntheticinhibitors include Z-Ala-Pro-Phe-glyoxal (Ki519 nm) and Z-Ala-Ala-Phe-glyoxal (Ki5344 nm) [51,52].The peptide IIe-Val-Asn-Gly-Glu-Glu-Ala-Val-Pro-Gly-SerTrp-Pro-Trp, corresponding to the N-terminal 14-mer of mature chymotrypsin A, is a highly potent, competitive
inhibitor [53]. Structural Chemistry Three amino acid residues, His57, Asp102 and Ser195,
the catalytic triad, are essential for peptide bond cleavage.
They are located at the entrance of a substrate-binding
pocket and their conservative arrangement is stabilized by
hydrogen bonds. These three amino acids are highly conserved in the sequences of the peptidases of family S1 (Chapter 559). A serine at position 214 is also highly conserved in the family, being present in all but three of almost 200 homologous bacterial and mammalian serine
proteinases [54,55,56]. Ser214 is hydrogen bonded to Asp102 and to the main-chain nitrogen atom of the scissile bond in the substrate. This residue contributes significantly to the polar environment that stabilizes the charge of the buried Asp102. A mutagenesis study performed on
trypsin supported the importance of the Ser214 function. This result and the invariance of this residue throughout the family led to the proposal that this residue might be considered as a fourth member of the catalytic triad[57]. The peptide amido groups of Gly193 and Ser195, in the
structural unit called the oxyanion hole, have important hydrogen bond donating interactions with the carbonyl group of the scissile peptide bond. These interactions are indispensable for catalysis since they orient the scissile bond NH to His57 and Ser195[58], initiating the formation of the tetrahedral intermediate. In the course of this process they dissipate the negative charge developing on the scissile bond carbonyl oxygen [15,59]. The interactions between the Sn,..S2, S1,S1 0 ,S2 0 ,..Sn 0 sites of the enzyme and the Pn,..P2, P1, P1
0 ,P20 ,..Pn 0 amino acid residues of the substrate ensure the precise alignment of the substrate to the catalytic triad and the oxyanion hole, and thereby the selectivity of catalysis.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
yang kimotripsin (dan tripsin), yang sejauh ini dianggap sebagai khusus membelah protein besar 'proteinase', benar-benar mampu memotong ikatan peptida 'internal' peptida pendek juga. Bergmann & Fruton [16] juga menemukan bahwa berbagai ester dan amida turunan dari
asam amino-kimotripsin spesifik juga dihidrolisis secara efektif oleh enzim. Chymotrypsin A, baik theα atau bentuk γ, diselidiki paling luas, tetapi beberapa aktivitas dan spesifisitas studi banding juga dilakukan dengan varian lainnya. Disepakati bahwa
kimotripsin Aπis bentuk yang paling aktif, dan bahwa hasil autolisis lebih lanjut dalam penurunan bertahap aktivitas katalitik [12,14]. Ia juga mencatat bahwa kimotripsin B, di
kontras dengan kimotripsin A, membagi ester asil-triptofan sangat lambat [20]. Memang, perbandingan kami baru-baru ini kekhususan substrat kimotripsin ternak A dan rekombinan tikus kimotripsin B telah mengungkapkan bahwa mantan adalah sekitar 100 kali lipat lebih aktif pada substrat
Suc-Ala-Ala-Pro Trp-NHMec (lihat di bawah) dibandingkan tikus kimotripsin B (Huda'ky, P., Kaslik, G., Szila'gyi, L., Venekei, I., Gra'f, L. tidak dipublikasikan hasil). Hidrolisis amida dan ester substrat oleh kimotripsin adalah proses tiga langkah yang enzim? kompleks substrat dan enzim asil menengah terbentuk [21] (Gambar 582,2). Bukti pertama ini
mekanisme dilaporkan oleh Hartley & Kilby [22] yang mengamati ledakan awal yang cepat dalam pembebasan OFP-nitrophenol saat kimotripsin dicampur dengan kelebihan p-nitrofenil asetat atau p-nitrofenil etil karbonat. Mereka mendalilkan bahwa awalnya ester dengan cepat terasilasi
enzim dalam rasio mol-to-mol, dan bahwa tingkat turnover substrat selanjutnya dibatasi oleh deacylation hidrolitik lambat enzim. Keberadaan asil tersebut enzim menengah akhirnya dibuktikan dengan isolasi dan kristalisasi beberapa
bentuk yang stabil seperti indolylacryloyl-kimotripsin [23], tosil-kimotripsin (2CHA; [24]) dan dua photoreversible sinamoil-chymotrypsins [25]. Kemudian bekerja ini sangat menarik karena, karena struktur khusus dari inhibitor terikat, cis cahaya yang disebabkan? Isomerisasi trans
meningkatkan tingkat deacylation dengan beberapa kali lipat. Photoirradiaton kristal kimotripsin menghambat memicu deacylation, sehingga proses bisa langsung dipelajari oleh X-ray kristalografi [26]. Selain itu, pembentukan intermediet enzim asil di jalur amida hidrolisis juga disimpulkan oleh percobaan partisi nukleofil [27]. Baru-baru ini, analisis yang cermat dari struktur X-ray dari γ-kimotripsin memiliki Lambat Cys 1 Asn 245 Cys
aktivasi aktivasi autolisis 1 Chymotrypsinogen dan autolisis Tyr Neochymotrypsinogen
Ala 146 149 Asn 245 Cys 1 Tyr α-Chymotrypsin Ala 146 149 Leu Ile 13 16 Asn 245 Cepat autolisis autolisis Cys 1 Tyr γ-Chymotrypsin Ala 146 149 Leu Ile 13 16 Asn 245 Cys 1 δ-Chymotrypsin
π-Chymotrypsin Leu Ile 13 16 Asn 245 Cys 1 Arg Ile 15 16 Asn 245 GAMBAR 582,1 'Lambat' dan 'cepat' aktivasi dari chymotrypsinogen. E-OH + RCOX E-OH.RCOX E-OH + H2O RCOOH k3 E-OC k2 XH
k + 1
k-1
O
R
GAMBAR 582,2 skema Kinetic tindakan kimotripsin. Dalam proses keseimbangan yang cepat (Ks5k11
/ k? 1) enzim membentuk kompleks Michaelis dengan amida atau ester substrat yang dibelah pada langkah berikutnya (ditandai dengan tingkat constantk2) untuk membentuk asil-enzim menengah dan amida atau alkohol. Konstanta laju hidrolisis isk3 asil-enzim.
2627 Clan PA S1 |? 582. Kimotripsin mengungkapkan bahwa bentuk ini merupakan kompleks enzim asil dari
α-chymotrypsin dengan produk autolisis nya (Dixon & Matthews [28]:. Struktur 1GCT; Dixon et al [29]:. Struktur 2GCT, 3GCT; Hareletal [30]: Struktur 8GCH) .Dalam heksana, yang tetrahedral menengah reaksi juga diamati (Yennawaret al [31]: 1GCM.).
Besidestheir penting teoritis, substrat meledak menawarkan cara sederhana dan mudah untuk menentukan konsentrasi enzim aktif dengan situs aktif titrasi.
Awalnya, berbagai ester p-nitrofenil digunakan untuk tujuan ini, tetapi baru-baru, bahan dengan kelompok meninggalkan fluorogenik, seperti 4-metil-p-umbelliferyl (N, N, N, -triethylammonium) sinamat [32] havebeen dikembangkan, yang menyediakan sensitivitas secara signifikan lebih tinggi (20? 50 pmol). Baru-baru ini dijelaskan aktif-situs titrasi kimotripsin withα2-macroglobulin dan HPLC dapat memperkirakan aktivitas proteinase dengan sesedikit 5? 10 pmol
enzim [33]. Dalam perjalanan studi analisis urutan, chymotrypticdigests banyak peptida dan protein telah diperiksa secara detail. Selain hidrolisis pada amino aromatik
asam dan leusin, hidrolisis ikatan yang dibentuk oleh asparagin, asam cysteic, glutamin, glisin, histidin, isoleusin, lisin, serin, treonin dan valin juga telah ditemukan.
Pembelahan di situs ini tidak luas, namun , dan tergantung kuat pada P1
0 residu ([34], dan referensi di dalamnya). Chymotrypsin tidak menghidrolisis ikatan terbentuk
dengan kelompok imino prolin dalam protein. Schellenberger et al. (1991) [35] melakukan analisis struktur / aktivitas kuantitatif semua data kuantitatif yang tersedia pada hidrolisis kimotripsin-katalis asam amino dan substrat peptida pendek. Substrat dalam database span rentang dari P5 untuk P3 0 posisi. Ditemukan bahwa parameter untuk P5, P4 dan P3
0 subsites dapat dihilangkan dari perhitungan, yang menyiratkan bahwa interaksi di situs tersebut tidak memberikan kontribusi yang signifikan terhadap efisiensi katalitik dari kimotripsin. Kontribusi P1 dihitung untuk login (kcat / Km) memberikan korelasi linear dengan refraksi molar
rantai samping P1. (Refraksi molar adalah ukuran dari volume dan polarisabilitas dari substituen.) Substrat spesifisitas pemetaan menggunakan semua 400 kemungkinan dipeptides dalam bentuk membran-terikat memberikan hasil yang sama [36]. Teknik analisis yang paling umum dan nyaman untuk penentuan aktivitas spektrofotometri withp-nitroaniline sebagai meninggalkan grup. Substrat yang tersedia secara komersial termasuk Suc-Phe-NHPhNO2 [37] dan SucAla-Ala-Pro-Phe-NHPhNO2 [38]. Sensitivitas yang lebih besar dapat dicapai baik oleh kelompok meninggalkan fluorogenik (misalnya Suc-Ala-Ala-Pro-Phe-NHMec), dengan ester thiobenzyl sangat reaktif (Suc-Ala-Ala-Pro-Phe-SBzl; [39]) atau dengan substrat bioluminescence seperti 6- (N-asetil-L-phenylalanyl) -aminoluciferin [40]. Prolin umumnya hadir pada posisi P2 dalam substrat sintetik commerciallyavailable (misalnya Suc-AlaAla-Pro-Phe-NHPhNO2). Tergantung pada pH dan suhu, sekitar 85% dari obligasi Ala-Pro adalah trans, memberikan substrat yang baik untuk kimotripsin, sedangkan thecisform tidak substrat. Kegiatan peptidylprolylcis? Isomerase trans sehingga dapat diukur dalam tes digabungkan
dengan kimotripsin [41,42]. Kimotripsin dihambat oleh umum peptidase serin
inhibitor seperti DFP [43], PMSF [44], DCI [45], leupeptin dan chymostatin [46]. Ada banyak alami inhibitor protein termasuk kalkun ovomucoid domain ketiga [47], aprotinin [48], berbagai serpin, marinostatin [49] dan Eglin c [50]. Sintetis Novel
inhibitor meliputi Z-Ala-Pro-Phe-glioksal (Ki519 nm) dan Z-Ala-Ala-Phe-glioksal (Ki5344 nm) [51,52] an peptida IIe-Val-Asn-Gly-Glu-Glu -Ala-Val-Pro-Gly-SerTrp-Pro-Trp, sesuai dengan N-terminal 14-mer matang kimotripsin A, adalah sangat kuat, kompetitif
inhibitor [53]. Struktur Kimia Tiga residu asam amino, His57, Asp102 dan Ser195,
triad katalitik, sangat penting untuk pembelahan ikatan peptida.
Mereka berada di pintu masuk substrat mengikat
saku dan pengaturan konservatif distabilkan oleh
ikatan hidrogen. Ketiga asam amino sangat dilestarikan dalam urutan dari peptidase keluarga S1 (Bab 559). Sebuah serin pada posisi 214 juga sangat kekal dalam keluarga, yang hadir dalam semua kecuali tiga dari hampir 200 homolog serin bakteri dan mamalia
proteinase [54,55,56]. Ser214 adalah hidrogen terikat Asp102 dan atom nitrogen utama-rantai ikatan scissile dalam substrat. Residu ini memberikan kontribusi signifikan terhadap lingkungan kutub yang menstabilkan bertanggung jawab atas dimakamkan Asp102. Sebuah studi mutagenesis dilakukan pada
tripsin mendukung pentingnya fungsi Ser214. Hasil ini dan invarian residu ini seluruh keluarga menyebabkan proposal yang residu ini mungkin dianggap sebagai anggota keempat dari triad katalitik [57]. Kelompok peptida amido dari Gly193 dan Ser195, dalam
unit struktural yang disebut lubang oxyanion, memiliki ikatan hidrogen penting menyumbangkan interaksi dengan gugus karbonil ikatan peptida scissile. Interaksi ini sangat diperlukan untuk katalisis karena mereka mengarahkan scissile NH obligasi untuk His57 dan Ser195 [58], memulai pembentukan tetrahedral menengah. Dalam perjalanan proses ini mereka menghilang muatan negatif berkembang pada karbonil obligasi scissile oksigen [15,59]. Interaksi antara Sn, .. S2, S1, S1 0, S2 0, .. Sn 0 situs enzim dan Pn, .. P2, P1, P1
0, P20, .. Pn residu asam amino dari 0 substrat memastikan keselarasan yang tepat dari substrat ke triad katalitik dan lubang oxyanion, dan dengan demikian selektivitas katalis.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: ilovetranslation@live.com