Equation (1) is the AR process of order k for inflation (pt). Equation terjemahan - Equation (1) is the AR process of order k for inflation (pt). Equation Bahasa Indonesia Bagaimana mengatakan

Equation (1) is the AR process of o

Equation (1) is the AR process of order k for inflation (pt). Equation (2) gives the
estimates of inflation uncertainty as the conditional variance for the past variance of
the error terms, estimated from equation (1).
There is a serious drawback in using the ARCH/GARCH model to generate inflation
uncertainty, because it considers 12t
2i , which is the square of the inflation shock. Thus,
it fails to distinguish between the positive and negative deviations between inflation
and estimated inflation. In other words, it implicitly assumes that the estimated
inflation can deviate from the actual inflation in only one direction.
We can overcome this problem by considering the exponential GARCH (or
EGARCH) model, which can take into account positive and the negative shocks[6].
Instead of using the square of the estimated error term as in GARCH to calculate the
conditional variance (equation (2) above), EGARCH uses the ratio of estimated error
and its standard deviation in actual and absolute terms. In addition, in EGARCH the
conditional variance is also dependent on the lagged variance of the error term.
Thus, our multivariate EGARCH model in mean (EGARCH-M) for inflation and
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Equation (1) is the AR process of order k for inflation (pt). Equation (2) gives theestimates of inflation uncertainty as the conditional variance for the past variance ofthe error terms, estimated from equation (1).There is a serious drawback in using the ARCH/GARCH model to generate inflationuncertainty, because it considers 12t2i , which is the square of the inflation shock. Thus,it fails to distinguish between the positive and negative deviations between inflationand estimated inflation. In other words, it implicitly assumes that the estimatedinflation can deviate from the actual inflation in only one direction.We can overcome this problem by considering the exponential GARCH (orEGARCH) model, which can take into account positive and the negative shocks[6].Instead of using the square of the estimated error term as in GARCH to calculate theconditional variance (equation (2) above), EGARCH uses the ratio of estimated errorand its standard deviation in actual and absolute terms. In addition, in EGARCH theconditional variance is also dependent on the lagged variance of the error term.Thus, our multivariate EGARCH model in mean (EGARCH-M) for inflation and
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Persamaan (1) merupakan proses AR order k inflasi (pt). Persamaan (2) memberikan
perkiraan ketidakpastian inflasi sebagai varians bersyarat untuk varian terakhir dari
istilah kesalahan, diperkirakan dari persamaan (1).
Ada kelemahan serius dalam menggunakan ARCH model / GARCH untuk menghasilkan inflasi
ketidakpastian, karena menganggap 12t
2i, yang merupakan kuadrat dari shock inflasi. Dengan demikian,
gagal untuk membedakan antara penyimpangan positif dan negatif antara inflasi
dan diperkirakan inflasi. Dengan kata lain, secara implisit mengasumsikan bahwa perkiraan
inflasi dapat menyimpang dari inflasi aktual hanya satu arah.
Kita dapat mengatasi masalah ini dengan mempertimbangkan eksponensial GARCH (atau
EGARCH) model, yang bisa memperhitungkan positif dan guncangan negatif [6 ].
Alih-alih menggunakan persegi istilah kesalahan diperkirakan di GARCH untuk menghitung
varians bersyarat (persamaan (2) di atas), EGARCH menggunakan rasio diperkirakan kesalahan
dan deviasi standar dalam hal yang sebenarnya dan mutlak. Selain itu, di EGARCH yang
varians bersyarat juga tergantung pada varian tertinggal dari istilah kesalahan.
Jadi, multivariat model yang EGARCH kami dalam mean (EGARCH-M) untuk inflasi dan
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: