Two further methods to determine H0 make use of correlations between d terjemahan - Two further methods to determine H0 make use of correlations between d Bahasa Indonesia Bagaimana mengatakan

Two further methods to determine H0

Two further methods to determine H0 make use of correlations between different galaxy properties. Spiral galaxies rotate, and there the Tully–Fisher relation correlates total luminosity with maximum rotation velocity. This is currently the most commonly applied distance indicator, useful for measuring extragalactic distances out to about 150 Mpc. Elliptical galaxies do not rotate, they are found to occupy a fundamental plane in which an effective radius is tightly correlated with the surface brightness inside that radius and with the central velocity dispersion of the stars. In principle, this method could be applied out to z ≈ 1, but




Figure 1.2 Recession velocities of different objects as a function of distance [7]. The slope determines the value of the Hubble constant.in practice stellar evolution effects and the nonlinearity of Hubble’s law limit the method to z _ 0.1, or about 400 Mpc. The resolution of individual stars within galaxies clearly depends on the distance to the galaxy. This method, called surface-brightness fluctuations (SBFs), is an indicator of relative distances to elliptical galaxies and some spirals. The internal precision of the method is very high, but it can be applied only out to about 70 Mpc.
The observations of the HST have been confirmed by independent SNI a observations from observatories on the ground [8]. The HST team quotes h ≡ H0/(100 km s−1 Mpc−1) = 0.72 ± 0.03 ± 0.07. (1.20) At the time of writing, even more precise determinations of H0, albeit not significantly different, come from combined multi parameter analyses of the cosmic microwave background spectrum [9] and large-scale structures, to which we shall return in Chapters 8 and 9. The present best value, h = 0.71, is given in Equation (8.43) and in Table A.2 in the appendix. In Figure 1.2 we plot the combined HST observations of H0. Note that the second error in Equation (1.20), which is systematic, is much bigger than the statistical error. This illustrates that there are many unknown effects which complicate the determination of H0, and which in the past have made all determinations controversial. To give just one example, if there is dust on the sight line to a supernova, its light would be reddened and one would conclude that the recession velocity is higher than it is in reality. There are other methods, such as weak lensing (to be discussed in Section 3.3), which do not suffer from this systematic error, but they have not yet reached a precision superior to that
reported in Equation (1.20).
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Dua metode yang lebih lanjut untuk menentukan H0 membuat menggunakan korelasi antara sifat-sifat galaksi yang berbeda. Galaksi spiral memutar, dan ada hubungan Tully – Fisher berkorelasi Luminositas dengan kecepatan rotasi maksimum. Ini adalah saat ini indikator jarak paling sering diterapkan, berguna untuk mengukur jarak extragalactic untuk sekitar 150 Mpc. galaksi elips tidak memutar, mereka ditemukan untuk menempati bidang fundamental di mana radius efektif erat berkorelasi dengan kecerahan permukaan dalam radius itu dan dengan dispersi kecepatan pusat bintang-bintang. Pada prinsipnya, metode ini dapat diterapkan keluar untuk z ≈ 1, tetapi Gambar 1.2 resesi velocities dari objek yang berbeda sebagai fungsi dari jarak [7]. Lereng menentukan nilai dari Hubble constant.in praktek evolusi bintang efek dan non-linear batas Hukum Hubble metode untuk z _ 0.1, atau sekitar 400 Mpc. Resolusi dari individu bintang dalam galaksi jelas tergantung pada jarak ke galaksi. Metode ini, disebut fluktuasi kecerahan permukaan (SBFs), merupakan indikator relatif jarak ke galaksi elips dan beberapa spiral. Ketepatan internal metode sangat tinggi, tetapi dapat diterapkan hanya keluar untuk sekitar 70 Mpc.Pengamatan HST telah dikonfirmasi oleh independen SNI pengamatan dari Observatorium di tanah [8]. Tim HST mengutip h ≡ H0 / (100 km s−1 Mpc−1) = 0,72 0.03 ± 0,07. (1.20) pada saat menulis, bahkan lebih tepat penentuan-penentuan H0, meskipun tidak secara signifikan berbeda, berasal dari gabungan multi parameter analisis spektrum latar belakang mikrogelombang kosmis [9] dan struktur berskala besar, untuk yang kita akan kembali dalam Bab 8 dan 9. Nilai terbaik hadir, h = 0,71, diberikan dalam persamaan (8. 43) dan meja A.2 dalam lampiran. Dalam gambar 1.2 kita memplot pengamatan HST gabungan H0. Perhatikan bahwa kedua kesalahan dalam persamaan (1.20), yang sistematis, jauh lebih besar daripada kesalahan Statistik. Ini menggambarkan bahwa ada banyak efek yang tidak diketahui yang menyulitkan penentuan H0, dan yang di masa lalu telah membuat semua penentuan kontroversial. Untuk memberikan satu contoh, jika ada debu di garis mata untuk supernova, cahayanya akan memerah dan satu akan menyimpulkan bahwa resesi kecepatan lebih tinggi daripada di realitas. Ada metode lain, seperti lemah pada pelensaan (untuk dibahas dalam bagian 3.3), yang tidak menderita dari kesalahan sistematis ini, tetapi mereka belum mencapai presisi tinggidilaporkan dalam persamaan (1.20).
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Dua metode lebih lanjut untuk menentukan H0 make penggunaan korelasi antara sifat galaksi yang berbeda. Galaksi spiral memutar, dan ada hubungan Tully-Fisher berkorelasi Total luminositas dengan kecepatan rotasi maksimum. Ini adalah saat indikator jarak yang paling umum diterapkan, berguna untuk mengukur jarak extragalactic untuk sekitar 150 Mpc. Galaksi elips tidak memutar, mereka ditemukan untuk menduduki sebuah pesawat mendasar di mana jari-jari efektif erat berkorelasi dengan kecerahan permukaan dalam radius itu dan dengan dispersi kecepatan pusat bintang-bintang. Pada prinsipnya, metode ini bisa diterapkan untuk z ≈ 1, namun kecepatan Gambar 1.2 Resesi dari objek yang berbeda sebagai fungsi jarak [7]. Lereng menentukan nilai praktek constant.in Hubble efek evolusi bintang dan non-linear dari batas hukum Hubble metode untuk z _ 0,1, atau sekitar 400 Mpc. Resolusi bintang individu dalam galaksi jelas tergantung pada jarak ke galaksi. Metode ini, yang disebut fluktuasi permukaan kecerahan (SBFs), merupakan indikator jarak relatif terhadap galaksi elips dan beberapa spiral. Ketepatan internal metode ini sangat tinggi, tetapi dapat diterapkan hanya untuk sekitar 70 Mpc. Pengamatan HST telah dikonfirmasi oleh SNI independen sebuah pengamatan dari observatorium di tanah [8]. Tim HST mengutip h ≡ H0 / (100 km s-1 Mpc-1) = 0.72 ± 0.03 ± 0.07. (1.20) Pada saat penulisan, bahkan penentuan yang lebih tepat H0, meskipun tidak signifikan berbeda, berasal dari gabungan multi-parameter analisis spektrum latar belakang gelombang mikro kosmik [9] dan skala besar struktur, yang kita akan kembali pada Bab 8 dan 9. nilai terbaik saat ini, h = 0.71, diberikan dalam Persamaan (8.43) dan pada Tabel A.2 dalam lampiran. Pada Gambar 1.2 kita plot HST pengamatan gabungan dari H0. Perhatikan bahwa kesalahan kedua dalam Persamaan (1.20), yang sistematis, jauh lebih besar daripada kesalahan statistik. Hal ini menggambarkan bahwa ada banyak efek yang tidak diketahui yang menyulitkan penentuan H0, dan yang di masa lalu telah membuat semua penentuan kontroversial. Untuk memberikan hanya satu contoh, jika ada debu di garis pandang ke supernova, cahayanya akan memerah dan satu akan menyimpulkan bahwa kecepatan resesi lebih tinggi dari itu dalam kenyataan. Ada metode lain, seperti lensing lemah (akan dibahas dalam Bagian 3.3), yang tidak menderita kesalahan sistematik ini, tetapi mereka belum mencapai presisi unggul yang dilaporkan dalam Persamaan (1.20).







Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: