Item Response Theory is a general method for modelling the precision ( terjemahan - Item Response Theory is a general method for modelling the precision ( Bahasa Indonesia Bagaimana mengatakan

Item Response Theory is a general m

Item Response Theory is a general
method for modelling the precision
(or reliability) of a set of items across
different levels of a latent trait. For
example, in education, an ‘easy’ test
might reliably differentiate ‘very poor’
students from everyone else, but be less
reliable in differentiating ‘excellent’
students from everyone else. Similarly,
the Mini-IPIP6 measure of Extraversion
might be better (i.e., more precise) at
differentiating between people who
are low in Extraversion from everyone
else, relative to how accurate it is at
differentiating between people high in
Extraversion relative to others.
A reasonably even level of
measurement precision is extremely
important for a number of reasons. Skew
in measurement precision means that
a scale might be more reliable when
measuring variability at the low level
of a trait relative to variability at the
high level of the trait. This can lead to
biased estimates of the trait depending
on a person’s latent trait level. Such bias
can also lead to inaccurate conclusions
about the stability of the trait across
time, as it might appear that people who
are low in a trait change less in that trait
over time, whereas people high in the
trait may (spuriously) seem to change
more in their trait level. Rather than
reflecting genuine differential change,
if measurement precision is uneven,
this could simply be due to less reliable
measures across time at a given trait
level and hence more variability in the
measure. This could make it look like
people have changed more at one trait
level relative to another.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Item Response Theory is a general method for modelling the precision (or reliability) of a set of items across different levels of a latent trait. For example, in education, an ‘easy’ test might reliably differentiate ‘very poor’ students from everyone else, but be less reliable in differentiating ‘excellent’ students from everyone else. Similarly, the Mini-IPIP6 measure of Extraversion might be better (i.e., more precise) at differentiating between people who are low in Extraversion from everyone else, relative to how accurate it is at differentiating between people high in Extraversion relative to others. A reasonably even level of measurement precision is extremely important for a number of reasons. Skew in measurement precision means that a scale might be more reliable when measuring variability at the low level of a trait relative to variability at the high level of the trait. This can lead to biased estimates of the trait depending on a person’s latent trait level. Such bias can also lead to inaccurate conclusions about the stability of the trait across time, as it might appear that people who are low in a trait change less in that trait over time, whereas people high in the trait may (spuriously) seem to change more in their trait level. Rather than reflecting genuine differential change, if measurement precision is uneven, this could simply be due to less reliable measures across time at a given trait level and hence more variability in the measure. This could make it look like people have changed more at one trait level relative to another.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Item Response Theory adalah umum
metode untuk memodelkan presisi
(atau keandalan) dari satu set item di
tingkat yang berbeda dari sifat laten. Untuk
contoh, di bidang pendidikan, sebuah 'mudah' test
mungkin andal membedakan 'sangat miskin'
siswa dari orang lain, tetapi kurang
dapat diandalkan dalam membedakan 'sangat baik'
siswa dari orang lain. Demikian pula,
ukuran Mini-IPIP6 dari Extraversion
mungkin lebih baik (yaitu, lebih tepat) di
membedakan antara orang-orang yang
rendah di Extraversion dari orang
lain, relatif terhadap seberapa akurat itu di
membedakan antara orang-orang yang tinggi di
Extraversion relatif terhadap orang lain.
A cukup bahkan tingkat
presisi pengukuran sangat
penting untuk sejumlah alasan. Condong
di presisi pengukuran berarti bahwa
skala mungkin akan lebih diandalkan ketika
mengukur variabilitas pada tingkat rendah
dari sifat relatif terhadap variabilitas pada
tingkat tinggi sifat tersebut. Hal ini dapat menyebabkan
perkiraan bias dari sifat tergantung
pada tingkat sifat laten seseorang. Bias seperti
juga dapat menyebabkan kesimpulan yang tidak akurat
tentang stabilitas sifat tersebut di
waktu, karena akan muncul bahwa orang yang
rendah di suatu sifat berubah lebih dalam bahwa sifat
dari waktu ke waktu, sedangkan orang-orang yang tinggi dalam
sifat mungkin (spuriously) tampaknya mengubah
lebih di tingkat sifat mereka. Daripada
mencerminkan perubahan diferensial asli,
jika presisi pengukuran tidak merata,
ini bisa hanya disebabkan kurang dapat diandalkan
langkah-langkah di waktu di suatu sifat tertentu
tingkat dan variabilitas karenanya lebih dalam
ukuran. Ini bisa membuatnya terlihat seperti
orang telah berubah lebih pada satu sifat
tingkat relatif terhadap yang lain.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: