Chapter 2The Representation of Knowledge2.1 INTRODUCTION In this chapt terjemahan - Chapter 2The Representation of Knowledge2.1 INTRODUCTION In this chapt Bahasa Indonesia Bagaimana mengatakan

Chapter 2The Representation of Know

Chapter 2
The Representation of Knowledge
2.1 INTRODUCTION
In this chapter we will discuss some of the commonly used representations of knowledge for expert systems. Knowledge representation is of major importance in expert systems for two reasons. First, expert system shells are designed for a certain type of knowledge representation such as rules or logic. Second, the way in which an expert system represents knoeledge affect the development, efficiency, speed, and maintenance of the system. In Chapter 3, we will discuss how inferences are made.
2.2 THE MEANING OF KNOWLEDGE
Knowledge, like love, is one of those words that everyone knows the meaning of, yet finds hard to define, like love, knowledge has many meanings. Other words such as data, facts, and information are often used interchangebly with knowledge.
The study of knowledge is episstomology (Angeles 81). It is concerned with the nature, structure, and origins of knowledge. Figure 2.1 illustrates some of the categories of epistemology. Besides the philosophical kinds of knowledge expressed by Aristotle, Plato, Descartes, Hume, Kant, and others, there are two special types, called a priori and a posteriori. The term a priori comes from the Latin and means “that which precedes”. A priori knowledge comes before and is independent of knowledge from the senses. As an example, the statements “everithing has a cause” and “all triangles in a plane have 180 degrees” are examples of a priori knowledge. A priori knowledge is considered to be universally true and cannot be denied without contradiction. Logic statements, mathematical laws, and the knowledge possessed by teenagers are examples of a priori knowledge.
The opposite of a priori knowledge is knowledge derived from the senses, or a posteriori knowledge. The truth or falsity of a posteriori knowledge can be verified using sense experience, as in the statement “the light is green”. However, because sensory experience may not always be reliable, a posteriori knowledge can be denied on the basis of new knowledge without the necessity of contradictions. For example, if you saw someone with brown eyes, you would believe that person’s eyes were brown. However, if you later saw that person removing brown contact lenses to reveal blue eyes, your knowledge would have to be revised.
Knowledge can be further classified into procedural knowledge, declarative knowledge, and tacit knowlwdge. The procedural and declarative knowledge types correspond to the procedural and declarative paradigms dscussed in Chapter 1.
Procedural knowledge is often referred to as knowing how to do something. An example of procedural knowledge is knowing how to boil a pot of water. Declarative knowledge refers to knowing that something is true or false. It is concerned with knowledge expressed in the form of declarative statements such as “Don’t put your fingers in a pot of boiling water”.


EPISTOMOLOGY



PHILOSOPHIC A PRIORI A POSTERIORI
THEORIES KNOWLEDGE KNOWLEDGE



ARISTOTLE
PLATO
KANT
LOCKE
MILL
Figure 2.1 Some Categories of Epistemology
Tacit knowledge is sometimes called unconscious knowledge because it cannot be expressed by languge. An example is knowing how to move your hand. On a gross scale, you might say that you move your hand by tightening or relaxing tighten or relax the muscles and tendons? Other examples are walking or riding a bicycle. In computer systems ANS is related to tacit knowledge bacause normally the neural net cannot directly explain its knowledge, but may be able to if given an appropiriate program (see Section 1.14).
Knowledge is of primary importance in expert systems. In fact, an analogy to Wirth’s classic expression
Algorithms + Data Structures = Programs
For expert systems is
Knowledge + Inference = Expert Systems
As used in this book, knowledge is part of a hierarchy, illustrated in Figure 2.2. at the bottom is noise, consisting of items that are of little interest and that obscure data. The next higher level is data, which are items of potential interest. Information, or processed data that are of interest are on the third level. Next is knowledge, which represents very specialized information. In Chapter 1, knowledge in rule-based expert systems was defined as the rules that were activated by facts to produce new facts or conclusions. This process of inferencing is the second essential part of an expert systems. Reasong is generally used in human thinking.

META-
KNOWLEDGE
KNOWLEDGE
INFORMATION
DATA
NOISE

Figure 2.2 The Hierarchy of Knowledge
The term facts can mean either data or information. Depending on how they are written, expert systems may draw inferences using data or information. Expert systems may also (1) separate data from noise, (2) transform data info information, or (3) transform information into knowledge.
As an example of these concepts, consider the following sequence of 24 numbers :
137178766832525156430015
Without knowledge, this entire sequence may appear to be noise. However, if it is known that this sequence is meaningful, then the sequence is data. Determining what is data and what is noise is like the old saying about gardening, “a weed is anything that grows that isn’t what you want”.
Certain knowledge may exist to transform data into information. For example, the following algorithm processes the data to yield information.
Group the numbers by twos.
Ignore any two-digit numbers less than 32.
Substitute the ASCII characters for the two-digit numbers.
Application of this algorithm to the previous 24 numbers yields the information
GOLD 438+
Now knowledge can be applied to this information. For example, there may be a rule
IF gold is less than 500
And the price is rising (+)
THEN
Buy gold
Although not explicitly shown in Figure 2.2, expertise is a specialized type of knowledge that experts have. Expertise is not commonly found in public sources of information such as books and papers. Instead, expertise is the implicit knowledge of the expert that must be extracted and made explicit so it can be encoded in an expert system. Above knowledge is metaknowledge. One meaning of the prefix meta is “above”. Metaknowledge is knowledge about knowledge and expertise. An expert system may be designed with knowledge about several different domains. Metaknowledge would specify which knowledge bases about car repair of 1988 Chevrolets, 1985 Fords, and 1989 Cadillacs. Depending on what car needed repair, the appropriate knowledge base would be used. It would be inefficient in terms of memory and speed for all of the knowledge bases to be working at once. In addition, there could be conflicts as the expert system tried to decide the applicable rules from all knowledge bases at once. Metaknowledge may also be used within one domain to decide which group of rules in the domain is most applicable.
In a philosophical sense, wisdom is the peak of all knowledge. Wisdom is the metaknowledge of determining the best goals of life and how to obtain them. A rule of wisdom might be
IF I have enough money to keep my spouse happy
THEN I will retire and enjoy life
However, due to the extreme scarcity of wisdom in the world, we shall restrict ourselves to knowledge-based systems and leave wisdom-based systems to politicians.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Bab 2Representasi dari pengetahuan2,1 PENGANTAR Dalam bab ini kita akan membahas beberapa representasi umum digunakan pengetahuan untuk ahli sistem. Representasi pengetahuan sangat penting dalam sistem pakar untuk dua alasan. Pertama, sistem pakar kerang yang dirancang untuk jenis tertentu dari representasi pengetahuan seperti aturan atau logika. Kedua, cara di mana expert system mewakili knoeledge mempengaruhi pengembangan, efisiensi, kecepatan, dan pemeliharaan sistem. Dalam bab 3, kita akan membahas bagaimana kesimpulan yang dibuat.2.2 MAKNA PENGETAHUAN Pengetahuan, seperti cinta, adalah salah satu dari kata-kata yang semua orang tahu arti, namun menemukan sulit untuk menentukan, seperti cinta, pengetahuan telah banyak makna. Kata lain seperti data, fakta, dan informasi yang sering digunakan interchangebly dengan pengetahuan. Studi pengetahuan adalah episstomology (Angeles 81). Hal ini berkenaan dengan alam, struktur, dan asal-usul pengetahuan. 2.1 tokoh menggambarkan beberapa kategori Epistemologi. Selain jenis filsafat pengetahuan yang diungkapkan oleh Aristoteles, Plato, Descartes, Hume, Kant, dan lain-lain, ada dua jenis khusus, yang disebut apriori dan posteriori. Istilah apriori berasal dari bahasa Latin dan berarti "bahwa yang mendahului". Apriori pengetahuan datang sebelum dan independen dari pengetahuan dari indra. Sebagai contoh, pernyataan "keluar memiliki penyebab" dan "semua segitiga di pesawat memiliki 180 derajat" adalah contoh dari apriori pengetahuan. Apriori pengetahuan dianggap Universal benar dan tidak dapat disangkal tanpa kontradiksi. Pernyataan logika, hukum matematika dan pengetahuan yang dimiliki oleh remaja adalah contoh apriori pengetahuan. Kebalikan dari apriori pengetahuan adalah pengetahuan yang berasal dari indra, atau pengetahuan posteriori. Kebenaran atau kesalahan pengetahuan posteriori dapat diverifikasi menggunakan pengalaman rasa, seperti pernyataan "cahaya berwarna hijau". Namun, karena pengalaman indrawi mungkin tidak selalu dapat diandalkan, posteriori pengetahuan dapat ditolak atas dasar pengetahuan baru tanpa kontradiksi. Misalnya, jika Anda melihat seseorang dengan mata cokelat, Anda akan percaya bahwa mata orang yang cokelat. Namun, jika Anda kemudian melihat orang itu menghilangkan coklat lensa kontak untuk mengungkapkan mata biru, pengetahuan Anda harus direvisi. Pengetahuan dapat diklasifikasikan menjadi prosedural pengetahuan, pengetahuan deklaratif dan diam-diam mentransmisikan lebih lanjut. Jenis pengetahuan prosedural dan deklaratif yang sesuai dengan dscussed prosedural dan deklaratif paradigma dalam Bab 1. Prosedural pengetahuan sering disebut sebagai mengetahui bagaimana melakukan sesuatu. Contoh prosedural pengetahuan adalah mengetahui bagaimana panci air mendidih. Pengetahuan deklaratif merujuk untuk mengetahui bahwa ada sesuatu benar atau salah. Hal ini berkenaan dengan pengetahuan yang diekspresikan dalam bentuk pernyataan-pernyataan deklaratif seperti "Tidak menaruh jari-jari Anda dalam panci air mendidih".EPISTOMOLOGY FILSAFAT APRIORI POSTERIORI TEORI PENGETAHUAN PENGETAHUAN ARISTOTELES PLATO KANT LOCKE MILLMencari beberapa kategori Epistemologi 2.1 Diam-diam pengetahuan kadang-kadang disebut tidak sadar pengetahuan karena itu tidak dapat dinyatakan oleh languge. Contoh adalah mengetahui bagaimana memindahkan tangan Anda. Pada skala yang kotor, Anda mungkin mengatakan bahwa Anda pindah tangan Anda dengan pengetatan atau bersantai mengencangkan atau bersantai otot dan tendon? Contoh lain adalah berjalan kaki atau naik sepeda. Dalam sistem komputer ANS berkaitan dengan diam-diam pengetahuan bacause biasanya net saraf tidak bisa langsung menjelaskan pengetahuan, tetapi mungkin mampu jika diberikan appropiriate program (Lihat bagian 1.14). Pengetahuan adalah kepentingan utama dalam ahli sistem. Pada kenyataannya, sebuah analogi kepada Wirth's klasik ekspresi Algoritma + struktur Data = programUntuk sistem pakar Pengetahuan + kesimpulan = Expert Systems Seperti yang digunakan dalam buku ini, pengetahuan adalah bagian dari hirarki, diilustrasikan pada gambar 2.2. di bawah adalah suara, terdiri dari item yang menarik sedikit dan yang mengaburkan data. Level yang lebih tinggi adalah data, yang item yang menarik potensial. Informasi, atau data olahan yang menarik berada di tingkat ketiga. Berikutnya adalah pengetahuan, yang merupakan informasi yang sangat khusus. Dalam Bab 1, pengetahuan berbasis aturan ahli sistem didefinisikan sebagai aturan-aturan yang diaktifkan oleh fakta-fakta untuk menghasilkan fakta-fakta baru atau kesimpulan. Proses inferencing adalah bagian penting kedua ahli sistem. Reasong umumnya digunakan dalam pemikiran manusia.META-PENGETAHUANPENGETAHUANINFORMASIDATAKEBISINGAN 2.2 tokoh hirarki pengetahuan Fakta-fakta istilah dapat berarti data atau informasi. Tergantung pada bagaimana mereka ditulis, ahli sistem dapat menarik kesimpulan menggunakan informasi atau data. Ahli sistem mungkin juga (1) data terpisah dari kebisingan, (2) mengubah data info informasi, atau (3) mengubah informasi menjadi pengetahuan. Sebagai contoh konsep-konsep ini, perhatikan urutan 24 angka yang berikut:137178766832525156430015 Tanpa pengetahuan, seluruh urutan mungkin tampak kebisingan. Namun, jika diketahui bahwa urutan ini bermakna, maka urutan adalah data. Menentukan apa data dan apakah kebisingan adalah seperti pepatah lama yang mengatakan tentang berkebun, "gulma adalah segalanya yang tumbuh yang tidak apa yang Anda inginkan". Pengetahuan tertentu mungkin ada untuk mengubah data menjadi informasi. Sebagai contoh, algoritma berikut proses data untuk menghasilkan informasi. Kelompok angka oleh berpasangan. Mengabaikan nomor dua-digit kurang dari 32. Mengganti karakter ASCII untuk dua-digit angka.Penerapan algoritma ini untuk nomor 24 sebelumnya menghasilkan informasi EMAS 438 +Sekarang pengetahuan dapat diterapkan ke informasi ini. Misalnya, mungkin ada aturan Jika emas adalah kurang dari 500 Dan harga meningkat (+) KEMUDIAN Membeli emas Meskipun tidak secara eksplisit ditunjukkan dalam gambar 2.2, keahlian adalah jenis khusus dari pengetahuan yang ahli. Keahlian tidak sering ditemukan dalam sumber-sumber umum informasi seperti buku dan kertas. Sebaliknya, keahlian adalah pengetahuan implisit ahli yang harus diambil dan membuat eksplisit sehingga dapat dikodekan dalam expert system. Di atas pengetahuan adalah metaknowledge. Makna awalan meta "di atas". Metaknowledge adalah pengetahuan tentang pengetahuan dan keahlian. Expert system dapat dirancang dengan pengetahuan tentang beberapa domain yang berbeda. Metaknowledge akan menentukan yang pengetahuan dasar tentang perbaikan mobil 1988 Chevrolets, Ford tahun 1985 dan 1989 Cadillac. Tergantung pada apa mobil diperlukan perbaikan, basis pengetahuan yang tepat akan digunakan. Itu akan tidak efisien dalam hal memori dan kecepatan untuk semua Pangkalan Pengetahuan bekerja sekaligus. Selain itu, mungkin ada konflik sebagai sistem pakar yang mencoba untuk memutuskan aturan yang berlaku dari semua pengetahuan dasar sekaligus. Metaknowledge juga dapat digunakan dalam satu domain untuk memutuskan yang kelompok aturan di domain paling berlaku. Dalam pengertian filosofis, kebijaksanaan adalah puncak dari semua pengetahuan. Kebijaksanaan adalah metaknowledge untuk menentukan tujuan terbaik hidup dan bagaimana untuk mendapatkan mereka. Aturan kebijaksanaan mungkin Jika saya punya cukup uang untuk menjaga pasangan saya bahagia KEMUDIAN saya akan pensiun dan menikmati hidupNamun, karena kelangkaan ekstrim kebijaksanaan di dunia, kita akan membatasi diri untuk sistem berbasis pengetahuan dan meninggalkan sistem berbasis kebijaksanaan untuk politisi.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Chapter 2
The Representation of Knowledge
2.1 INTRODUCTION
In this chapter we will discuss some of the commonly used representations of knowledge for expert systems. Knowledge representation is of major importance in expert systems for two reasons. First, expert system shells are designed for a certain type of knowledge representation such as rules or logic. Second, the way in which an expert system represents knoeledge affect the development, efficiency, speed, and maintenance of the system. In Chapter 3, we will discuss how inferences are made.
2.2 THE MEANING OF KNOWLEDGE
Knowledge, like love, is one of those words that everyone knows the meaning of, yet finds hard to define, like love, knowledge has many meanings. Other words such as data, facts, and information are often used interchangebly with knowledge.
The study of knowledge is episstomology (Angeles 81). It is concerned with the nature, structure, and origins of knowledge. Figure 2.1 illustrates some of the categories of epistemology. Besides the philosophical kinds of knowledge expressed by Aristotle, Plato, Descartes, Hume, Kant, and others, there are two special types, called a priori and a posteriori. The term a priori comes from the Latin and means “that which precedes”. A priori knowledge comes before and is independent of knowledge from the senses. As an example, the statements “everithing has a cause” and “all triangles in a plane have 180 degrees” are examples of a priori knowledge. A priori knowledge is considered to be universally true and cannot be denied without contradiction. Logic statements, mathematical laws, and the knowledge possessed by teenagers are examples of a priori knowledge.
The opposite of a priori knowledge is knowledge derived from the senses, or a posteriori knowledge. The truth or falsity of a posteriori knowledge can be verified using sense experience, as in the statement “the light is green”. However, because sensory experience may not always be reliable, a posteriori knowledge can be denied on the basis of new knowledge without the necessity of contradictions. For example, if you saw someone with brown eyes, you would believe that person’s eyes were brown. However, if you later saw that person removing brown contact lenses to reveal blue eyes, your knowledge would have to be revised.
Knowledge can be further classified into procedural knowledge, declarative knowledge, and tacit knowlwdge. The procedural and declarative knowledge types correspond to the procedural and declarative paradigms dscussed in Chapter 1.
Procedural knowledge is often referred to as knowing how to do something. An example of procedural knowledge is knowing how to boil a pot of water. Declarative knowledge refers to knowing that something is true or false. It is concerned with knowledge expressed in the form of declarative statements such as “Don’t put your fingers in a pot of boiling water”.


EPISTOMOLOGY



PHILOSOPHIC A PRIORI A POSTERIORI
THEORIES KNOWLEDGE KNOWLEDGE



ARISTOTLE
PLATO
KANT
LOCKE
MILL
Figure 2.1 Some Categories of Epistemology
Tacit knowledge is sometimes called unconscious knowledge because it cannot be expressed by languge. An example is knowing how to move your hand. On a gross scale, you might say that you move your hand by tightening or relaxing tighten or relax the muscles and tendons? Other examples are walking or riding a bicycle. In computer systems ANS is related to tacit knowledge bacause normally the neural net cannot directly explain its knowledge, but may be able to if given an appropiriate program (see Section 1.14).
Knowledge is of primary importance in expert systems. In fact, an analogy to Wirth’s classic expression
Algorithms + Data Structures = Programs
For expert systems is
Knowledge + Inference = Expert Systems
As used in this book, knowledge is part of a hierarchy, illustrated in Figure 2.2. at the bottom is noise, consisting of items that are of little interest and that obscure data. The next higher level is data, which are items of potential interest. Information, or processed data that are of interest are on the third level. Next is knowledge, which represents very specialized information. In Chapter 1, knowledge in rule-based expert systems was defined as the rules that were activated by facts to produce new facts or conclusions. This process of inferencing is the second essential part of an expert systems. Reasong is generally used in human thinking.

META-
KNOWLEDGE
KNOWLEDGE
INFORMATION
DATA
NOISE

Figure 2.2 The Hierarchy of Knowledge
The term facts can mean either data or information. Depending on how they are written, expert systems may draw inferences using data or information. Expert systems may also (1) separate data from noise, (2) transform data info information, or (3) transform information into knowledge.
As an example of these concepts, consider the following sequence of 24 numbers :
137178766832525156430015
Without knowledge, this entire sequence may appear to be noise. However, if it is known that this sequence is meaningful, then the sequence is data. Determining what is data and what is noise is like the old saying about gardening, “a weed is anything that grows that isn’t what you want”.
Certain knowledge may exist to transform data into information. For example, the following algorithm processes the data to yield information.
Group the numbers by twos.
Ignore any two-digit numbers less than 32.
Substitute the ASCII characters for the two-digit numbers.
Application of this algorithm to the previous 24 numbers yields the information
GOLD 438+
Now knowledge can be applied to this information. For example, there may be a rule
IF gold is less than 500
And the price is rising (+)
THEN
Buy gold
Although not explicitly shown in Figure 2.2, expertise is a specialized type of knowledge that experts have. Expertise is not commonly found in public sources of information such as books and papers. Instead, expertise is the implicit knowledge of the expert that must be extracted and made explicit so it can be encoded in an expert system. Above knowledge is metaknowledge. One meaning of the prefix meta is “above”. Metaknowledge is knowledge about knowledge and expertise. An expert system may be designed with knowledge about several different domains. Metaknowledge would specify which knowledge bases about car repair of 1988 Chevrolets, 1985 Fords, and 1989 Cadillacs. Depending on what car needed repair, the appropriate knowledge base would be used. It would be inefficient in terms of memory and speed for all of the knowledge bases to be working at once. In addition, there could be conflicts as the expert system tried to decide the applicable rules from all knowledge bases at once. Metaknowledge may also be used within one domain to decide which group of rules in the domain is most applicable.
In a philosophical sense, wisdom is the peak of all knowledge. Wisdom is the metaknowledge of determining the best goals of life and how to obtain them. A rule of wisdom might be
IF I have enough money to keep my spouse happy
THEN I will retire and enjoy life
However, due to the extreme scarcity of wisdom in the world, we shall restrict ourselves to knowledge-based systems and leave wisdom-based systems to politicians.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: