2. Review on the influence of water composition/parameters onEspressoc terjemahan - 2. Review on the influence of water composition/parameters onEspressoc Bahasa Indonesia Bagaimana mengatakan

2. Review on the influence of water

2. Review on the influence of water composition/parameters on
Espressocoffee brewing
2.1. Alkaline scale formation and sodium softening
Alkaline scale normally consists of calcium carbonate, magnesium hydroxide, or admixtures of both compounds which crystallise on heat transfer surfaces in contact with natural waters (Dooly
& Glater, 1972). The resulting encrustation has long been a problem in the operation of boilers and other kinds of Espressocoffee equipment. Alkaline scaling can occur only in waters containing
bicarbonate ion, but the chemical mechanism of this process is not fully understood, and two different mechanisms have been proposed (Dooly & Glater, 1972; Shams El Din, El-Dahshan, & Mohammed, 2002). Scaling is triggered by the thermal decomposition of bicarbonate ion. Upon heating aboveca45 C, HCO 3 breaks down according to Eq.(1). 2HCO 3 ¢DCO 23 þCO2þH2O ð1ÞCarbonate ion generated in this process can now participate in two competing equilibria. The first is the precipitation of calcium
carbonate once its solubility limit is reached, as shown in Eq.(2). Caþ2þCO 23 ¢CaCO3 ð2Þ A second, at still higher temperature (P80 C), reaction occurring concurrently is the hydrolysis of carbonate given by Eq.(3).CO 23 þH2O¢CO2þ2OH ð3Þ If sufficient magnesium exists in solution such that ion product
exceeds solubility limit of magnesium hydroxide, a precipitate will form according to Eq.(4). Mgþ2þ2OH ¢MgðOHÞ2ð4ÞAccording to this mechanism alkaline scaling always involves the formation of carbonate ion at low temperature and hydroxide ion at higher temperature. However, to account for the primary precipitation of Mg(OH)2observed under certain conditions, a second mechanism has been proposed (Dooly & Glater, 1972). According to this mechanism, hydroxide ion is produced by bicarbonate ion directly without the intermediate formation of carbonate ion, as shown in Eq.(5).
HCO 3 ¢CO2þOH ð5ÞAfter the direct breakdown of bicarbonate ion, a fast acid–baseneutralisation step occurs, as shown in Eq.(6). OH þHCO 3 ¢CO 23 þH2O ð6ÞThe overall picture suggests that alkaline scaling is a complex process involving competitive equilibria between certain unimolecular and bimolecular rate processes which occur simultaneously. The direct use of public waterworks’ drinking water in both professional and homeEspressomachines produces intolerable deposits in a period which, depending on water composition, may be sometimes very short. Among the several strategies which can be used to preventEspressomachine from scale deposits, sodium softening is still the most chosen. Independently on the alkaline scale formation mechanism, the replacement of calcium and magnesium
ions with sodium ions, without affecting bicarbonate content, is very effective in the scale prevention but also in changing dramatically the effect of the thermal decomposition of the bicarbonate
ions on the water pH, due to the formation of the more basic carbonate and hydroxide ions. For the latter, the chemistry can be summarised as shown in Eq.(7). Na þ þHCO 3 ¢ D CO2þNaOH ð7Þ
At 100 C, the pH of 4% NaCl solution containing 150 ppm of sodium bicarbonate, steadily increased, as a function of time, up 10 after 4 h thermal treatment. No pH rise has been observed under identical experimental conditions on the same system added with 500 ppm of Ca2+ (Shams El Din et al., 2002). The rise in pH on heating sodium softened water has been found to remarkably affect the
Espressocoffee extraction and to this point is dedicated a separate paragraph. Of course, to solve any problem related to alkaline scaling and subsequent sodium softening, very soft water (even distilled water) could be used. However very soft waters exposed to air and heated become acidic and corrosive, and therefore dangerous forEspressomachines. Several countries have issued non-binding recommended hardness ranges. These are usually around 80– 100 mg CaCO3/l hardness (corresponding to 8–10 French degrees, f) and 50–60 mg CaCO3/l alkalinity, figures calculated to minimise the combined cost of scaling and corrosion in municipal piping and domestic hot-water systems. These ranges, incorrectly, have been suggested as optimal forEspressocoffee preparation, but the levels required for taste can be quite different (Schulman, 2002).
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
2. Review on the influence of water composition/parameters onEspressocoffee brewing2.1. Alkaline scale formation and sodium softeningAlkaline scale normally consists of calcium carbonate, magnesium hydroxide, or admixtures of both compounds which crystallise on heat transfer surfaces in contact with natural waters (Dooly& Glater, 1972). The resulting encrustation has long been a problem in the operation of boilers and other kinds of Espressocoffee equipment. Alkaline scaling can occur only in waters containingbicarbonate ion, but the chemical mechanism of this process is not fully understood, and two different mechanisms have been proposed (Dooly & Glater, 1972; Shams El Din, El-Dahshan, & Mohammed, 2002). Scaling is triggered by the thermal decomposition of bicarbonate ion. Upon heating aboveca45 C, HCO 3 breaks down according to Eq.(1). 2HCO 3 ¢DCO 23 þCO2þH2O ð1ÞCarbonate ion generated in this process can now participate in two competing equilibria. The first is the precipitation of calciumcarbonate once its solubility limit is reached, as shown in Eq.(2). Caþ2þCO 23 ¢CaCO3 ð2Þ A second, at still higher temperature (P80 C), reaction occurring concurrently is the hydrolysis of carbonate given by Eq.(3).CO 23 þH2O¢CO2þ2OH ð3Þ If sufficient magnesium exists in solution such that ion productexceeds solubility limit of magnesium hydroxide, a precipitate will form according to Eq.(4). Mgþ2þ2OH ¢MgðOHÞ2ð4ÞAccording to this mechanism alkaline scaling always involves the formation of carbonate ion at low temperature and hydroxide ion at higher temperature. However, to account for the primary precipitation of Mg(OH)2observed under certain conditions, a second mechanism has been proposed (Dooly & Glater, 1972). According to this mechanism, hydroxide ion is produced by bicarbonate ion directly without the intermediate formation of carbonate ion, as shown in Eq.(5).HCO 3 ¢CO2þOH ð5ÞAfter the direct breakdown of bicarbonate ion, a fast acid–baseneutralisation step occurs, as shown in Eq.(6). OH þHCO 3 ¢CO 23 þH2O ð6ÞThe overall picture suggests that alkaline scaling is a complex process involving competitive equilibria between certain unimolecular and bimolecular rate processes which occur simultaneously. The direct use of public waterworks’ drinking water in both professional and homeEspressomachines produces intolerable deposits in a period which, depending on water composition, may be sometimes very short. Among the several strategies which can be used to preventEspressomachine from scale deposits, sodium softening is still the most chosen. Independently on the alkaline scale formation mechanism, the replacement of calcium and magnesium
ions with sodium ions, without affecting bicarbonate content, is very effective in the scale prevention but also in changing dramatically the effect of the thermal decomposition of the bicarbonate
ions on the water pH, due to the formation of the more basic carbonate and hydroxide ions. For the latter, the chemistry can be summarised as shown in Eq.(7). Na þ þHCO 3 ¢ D CO2þNaOH ð7Þ
At 100 C, the pH of 4% NaCl solution containing 150 ppm of sodium bicarbonate, steadily increased, as a function of time, up 10 after 4 h thermal treatment. No pH rise has been observed under identical experimental conditions on the same system added with 500 ppm of Ca2+ (Shams El Din et al., 2002). The rise in pH on heating sodium softened water has been found to remarkably affect the
Espressocoffee extraction and to this point is dedicated a separate paragraph. Of course, to solve any problem related to alkaline scaling and subsequent sodium softening, very soft water (even distilled water) could be used. However very soft waters exposed to air and heated become acidic and corrosive, and therefore dangerous forEspressomachines. Several countries have issued non-binding recommended hardness ranges. These are usually around 80– 100 mg CaCO3/l hardness (corresponding to 8–10 French degrees, f) and 50–60 mg CaCO3/l alkalinity, figures calculated to minimise the combined cost of scaling and corrosion in municipal piping and domestic hot-water systems. These ranges, incorrectly, have been suggested as optimal forEspressocoffee preparation, but the levels required for taste can be quite different (Schulman, 2002).
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
2. Ulasan tentang pengaruh komposisi air / parameter pada
Espressocoffee menyeduh
2.1. Pembentukan skala Alkaline dan natrium pelunakan
skala Alkaline biasanya terdiri dari kalsium karbonat, magnesium hidroksida, atau pencampuran kedua senyawa yang mengkristal pada permukaan perpindahan panas dalam kontak dengan air alami (Dooly
& Glater, 1972). Kerak yang dihasilkan telah lama menjadi masalah dalam pengoperasian boiler dan jenis lain dari peralatan Espressocoffee. Alkaline skala hanya dapat terjadi di perairan yang mengandung
ion bikarbonat, tetapi mekanisme kimia proses ini tidak sepenuhnya dipahami, dan dua mekanisme yang berbeda telah diusulkan (Dooly & Glater, 1972; Shams El Din, El-Dahshan, & Mohammed, 2002) . Scaling dipicu oleh dekomposisi termal ion bikarbonat. Setelah pemanasan aboveca45 C, HCO 3 rusak menurut Persamaan. (1). 2HCO 3 ¢ DCO 23 þCO2þH2O ð1ÞCarbonate ion yang dihasilkan dalam proses ini sekarang dapat berpartisipasi dalam dua kesetimbangan bersaing. Yang pertama adalah pengendapan kalsium
karbonat setelah batas kelarutannya tercapai, seperti yang ditunjukkan pada persamaan. (2). Caþ2þCO 23 ¢ CaCO3 ð2Þ Kedua, pada suhu masih lebih tinggi (P80 C), reaksi yang terjadi secara bersamaan adalah hidrolisis karbonat yang diberikan oleh Persamaan. (3) .co 23 þH2O ¢ CO2þ2OH ð3Þ Jika magnesium yang cukup ada dalam larutan sehingga produk ion
melebihi Batas kelarutan magnesium hidroksida, endapan akan membentuk sesuai dengan persamaan. (4). Mgþ2þ2OH ¢ MgðOHÞ2ð4ÞAccording mekanisme ini basa skala selalu melibatkan pembentukan ion karbonat pada suhu rendah dan ion hidroksida pada suhu yang lebih tinggi. Namun, untuk menjelaskan curah hujan utama Mg (OH) 2observed dalam kondisi tertentu, mekanisme kedua telah diusulkan (Dooly & Glater, 1972). Menurut mekanisme ini, ion hidroksida yang dihasilkan oleh ion bikarbonat langsung tanpa pembentukan antara ion karbonat, seperti yang ditunjukkan pada persamaan. (5).
HCO 3 ¢ CO2þOH ð5ÞAfter rincian langsung ion bikarbonat, langkah cepat asam-baseneutralisation terjadi, seperti yang ditunjukkan pada persamaan. (6). OH þHCO 3 ¢ CO 23 þH2O ð6ÞThe gambaran keseluruhan menunjukkan bahwa skala alkali merupakan proses yang kompleks yang melibatkan kesetimbangan kompetitif antara proses tingkat tertentu unimolecular dan Bimolekular yang terjadi secara bersamaan. Penggunaan langsung air minum bangunan air publik di kedua profesional dan homeEspressomachines menghasilkan deposito tertahankan dalam periode yang, tergantung pada komposisi air, mungkin kadang-kadang sangat singkat. Di antara beberapa strategi yang dapat digunakan untuk preventEspressomachine dari deposito skala, natrium pelunakan masih yang paling dipilih. Independen pada mekanisme pembentukan skala basa, penggantian kalsium dan magnesium
ion dengan ion natrium, tanpa mempengaruhi konten bikarbonat, sangat efektif dalam pencegahan skala tetapi juga dalam mengubah secara dramatis efek dari dekomposisi termal dari bikarbonat
ion pada pH air , karena pembentukan karbonat yang lebih mendasar dan ion hidroksida. Untuk yang terakhir, kimia dapat diringkas seperti yang ditunjukkan pada persamaan. (7). Na þ þHCO 3 ¢ D CO2þNaOH ð7Þ
Pada 100 C, pH 4% larutan NaCl yang mengandung 150 ppm natrium bikarbonat, terus meningkat, sebagai fungsi waktu, sampai 10 setelah 4 jam perlakuan termal. Tidak ada kenaikan pH telah diamati di bawah kondisi percobaan yang sama pada sistem yang sama ditambah dengan 500 ppm Ca2 + (Shams El Din et al., 2002). Kenaikan pH pada pemanasan natrium air melunak telah ditemukan sangat mempengaruhi
ekstraksi Espressocoffee dan ke titik ini didedikasikan paragraf terpisah. Tentu saja, untuk memecahkan masalah yang berkaitan dengan skala alkali dan pelunakan natrium selanjutnya, air yang sangat lembut (bahkan air suling) dapat digunakan. Perairan namun sangat lembut terkena udara dan dipanaskan menjadi forEspressomachines asam dan korosif, dan karena itu berbahaya. Beberapa negara telah mengeluarkan tidak mengikat rentang kekerasan yang direkomendasikan. Ini biasanya sekitar 80- 100 mg CaCO3 / l kekerasan (sesuai dengan 8-10 derajat Perancis, f) dan 50-60 mg CaCO3 / l alkalinitas, angka dihitung untuk meminimalkan biaya gabungan skala dan korosi pada pipa kota dan domestik panas sistem -air. Kisaran tersebut, salah, telah diusulkan sebagai persiapan forEspressocoffee optimal, namun tingkat yang diperlukan untuk rasa bisa sangat berbeda (Schulman, 2002).
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: