An Important Question: Can We Move from System 1 to System 2?We believ terjemahan - An Important Question: Can We Move from System 1 to System 2?We believ Bahasa Indonesia Bagaimana mengatakan

An Important Question: Can We Move

An Important Question: Can We Move from System 1 to System 2?
We believe a number of promising strategies have been uncovered for
overcoming specific decision biases by shifting people from System 1 thinking to System
2 thinking.1 One successful strategy for moving toward System 2 thinking relies on
replacing intuition with formal analytic processes. For example, when data exists on past
inputs to and outcomes from a particular decision-making process, decision makers can
construct a linear model, or a formula that weights and sums the relevant predictorvariables to reach a quantitative forecast about the outcome. Researchers have found that
linear models produce predictions that are superior to those of experts across an
impressive array of domains (Dawes, 1971). The value of linear models in hiring,
admissions, and selection decisions is highlighted by research that Moore, Swift, Sharek,
and Gino (2007) conducted on the interpretation of grades, which shows that graduate
school admissions officers are unable to account for the leniency of grading at an
applicant’s undergraduate institution when choosing between candidates from different
schools. The authors argue that it would be easy to set up a linear model to avoid this
error (for example, by including in its calculation only an applicant’s standardized GPA,
adjusted by her school’s average GPA). In general, we believe that the use of linear
models can help decision makers avoid the pitfalls of many judgment biases, yet this
method has only been tested in a small subset of the potentially relevant domains.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
An Important Question: Can We Move from System 1 to System 2?We believe a number of promising strategies have been uncovered forovercoming specific decision biases by shifting people from System 1 thinking to System2 thinking.1 One successful strategy for moving toward System 2 thinking relies onreplacing intuition with formal analytic processes. For example, when data exists on pastinputs to and outcomes from a particular decision-making process, decision makers canconstruct a linear model, or a formula that weights and sums the relevant predictorvariables to reach a quantitative forecast about the outcome. Researchers have found thatlinear models produce predictions that are superior to those of experts across animpressive array of domains (Dawes, 1971). The value of linear models in hiring,admissions, and selection decisions is highlighted by research that Moore, Swift, Sharek,and Gino (2007) conducted on the interpretation of grades, which shows that graduateschool admissions officers are unable to account for the leniency of grading at anapplicant’s undergraduate institution when choosing between candidates from differentschools. The authors argue that it would be easy to set up a linear model to avoid thiserror (for example, by including in its calculation only an applicant’s standardized GPA,adjusted by her school’s average GPA). In general, we believe that the use of linearmodels can help decision makers avoid the pitfalls of many judgment biases, yet thismethod has only been tested in a small subset of the potentially relevant domains.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Sebuah Pertanyaan Penting: Bisakah Kita Pindah dari Sistem 1 Sistem 2
Kami percaya sejumlah strategi yang menjanjikan telah ditemukan untuk
mengatasi bias keputusan tertentu dengan menggeser orang-orang dari Sistem 1 berpikir untuk Sistem
2 thinking.1 Salah satu strategi yang berhasil untuk bergerak menuju sistem 2 pemikiran bergantung pada
intuisi mengganti dengan proses analisis formal. Misalnya, ketika data yang ada pada masa lalu
masukan ke dan hasil dari proses pengambilan keputusan tertentu, pengambil keputusan dapat
membangun sebuah model linear, atau formula yang berat dan merangkum para predictorvariables yang relevan untuk mencapai perkiraan kuantitatif tentang hasilnya. Para peneliti telah menemukan bahwa
model linier menghasilkan prediksi yang unggul daripada ahli melintasi
jajaran domain (Dawes, 1971). Nilai model linear dalam perekrutan,
penerimaan, dan keputusan seleksi disorot oleh penelitian yang Moore, Swift, Sharek,
dan Gino (2007) yang dilakukan pada interpretasi nilai, yang menunjukkan bahwa lulusan
petugas penerimaan sekolah tidak dapat menjelaskan keringanan hukuman tersebut grading pada
lembaga sarjana pemohon saat memilih antara kandidat dari berbagai
sekolah. Para penulis berpendapat bahwa itu akan mudah untuk membuat sebuah model linier untuk menghindari hal ini
kesalahan (misalnya, dengan termasuk dalam perhitungan hanya IPK standar pemohon,
disesuaikan dengan rata-rata IPK sekolahnya). Secara umum, kami percaya bahwa penggunaan linear
model dapat membantu pengambil keputusan menghindari perangkap banyak bias penilaian, namun ini
metode hanya diuji dalam subset kecil dari domain yang berpotensi relevan.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: