contact with a warm substratum.8 In practise, heliothermy and thigmoth terjemahan - contact with a warm substratum.8 In practise, heliothermy and thigmoth Bahasa Indonesia Bagaimana mengatakan

contact with a warm substratum.8 In

contact with a warm substratum.8 In practise, heliothermy and thigmothermy enable lizards to compensate for the thermal conditions of the habitat.9 Heliothermy and thigmothermy in lizards are therefore related to habitats and life-history strategies.
Heliothermy is a well-documented area in lizard biology.10 A principal reason for this bias is that diurnal basking lizard species are often the dominant vertebrates in hot arid environments and data on these animals are relatively easy to obtain. In contrast, Belliure and Carrascal8 suggest thigmothermy is a less well-studied aspect of animal thermal relations.
In general, thigmothermy is practised by species that have limited access to solar radiation.11 Most studies of lizard thigmothermy have considered diurnal species.12, 13 Among diurnal lizards, thigmothermy is normally practised by species in forest environments where incoming solar radiation is impeded by the tree canopy. Morgan14 suggests that in such environments, thermally discrete microclimates are important. In contrast thigmothermic behaviour is relatively more important for nocturnal lizards, which do not receive any solar radiation input.
Previous studies of thermal interactions between lizard and environment have predominantly used the internal body temperature (Tb) (i.e. cloacal) and ambient temperature (Ta) differential.12, 15–17 Auffenberg15 and Stevenson16 related body temperature to size. These authors concluded that larger size conferred a greater Tb − Ta differential due to thermal inertia. Thermal inertia is based upon the physical properties of heat dissipation whereby larger objects retain heat for longer than smaller objects due to reduced surface-to-volume scaling. Such a phenomenon has been demonstrated in extant crocodilian species and has been proposed for elevated temperatures in large dinosaur species.2, 18, 19
In contrast with previous work, this paper investigates radiant heat transmission using body surface temperature (Tbs). Cowles20 suggested that the dermal surface of reptiles could act as a heat collector and dispenser. Therefore the question arises as to whether the previous identified relationships between core and ambient temperatures are similar to the differentials between Tbs and Ta? The following experiment aims to investigate the correlation between length and Tb − Tadifferential. A further aim is to gain a greater understanding of heliothermy and thigmothermy in a range of lizard species.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
contact with a warm substratum.8 In practise, heliothermy and thigmothermy enable lizards to compensate for the thermal conditions of the habitat.9 Heliothermy and thigmothermy in lizards are therefore related to habitats and life-history strategies.Heliothermy is a well-documented area in lizard biology.10 A principal reason for this bias is that diurnal basking lizard species are often the dominant vertebrates in hot arid environments and data on these animals are relatively easy to obtain. In contrast, Belliure and Carrascal8 suggest thigmothermy is a less well-studied aspect of animal thermal relations.In general, thigmothermy is practised by species that have limited access to solar radiation.11 Most studies of lizard thigmothermy have considered diurnal species.12, 13 Among diurnal lizards, thigmothermy is normally practised by species in forest environments where incoming solar radiation is impeded by the tree canopy. Morgan14 suggests that in such environments, thermally discrete microclimates are important. In contrast thigmothermic behaviour is relatively more important for nocturnal lizards, which do not receive any solar radiation input.Previous studies of thermal interactions between lizard and environment have predominantly used the internal body temperature (Tb) (i.e. cloacal) and ambient temperature (Ta) differential.12, 15–17 Auffenberg15 and Stevenson16 related body temperature to size. These authors concluded that larger size conferred a greater Tb − Ta differential due to thermal inertia. Thermal inertia is based upon the physical properties of heat dissipation whereby larger objects retain heat for longer than smaller objects due to reduced surface-to-volume scaling. Such a phenomenon has been demonstrated in extant crocodilian species and has been proposed for elevated temperatures in large dinosaur species.2, 18, 19In contrast with previous work, this paper investigates radiant heat transmission using body surface temperature (Tbs). Cowles20 suggested that the dermal surface of reptiles could act as a heat collector and dispenser. Therefore the question arises as to whether the previous identified relationships between core and ambient temperatures are similar to the differentials between Tbs and Ta? The following experiment aims to investigate the correlation between length and Tb − Tadifferential. A further aim is to gain a greater understanding of heliothermy and thigmothermy in a range of lizard species.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
hubungi dengan substratum.8 hangat Dalam prakteknya, heliothermy dan thigmothermy memungkinkan kadal untuk mengimbangi kondisi termal dari habitat.9 Heliothermy dan thigmothermy di kadal karena itu terkait dengan habitat dan strategi riwayat hidup.
Heliothermy merupakan daerah terdokumentasi dengan baik dalam kadal biology.10 alasan utama untuk bias ini adalah bahwa spesies berjemur kadal diurnal sering vertebrata yang dominan di lingkungan gersang panas dan data pada hewan-hewan ini relatif mudah untuk mendapatkan. Sebaliknya, Belliure dan Carrascal8 menyarankan thigmothermy adalah aspek yang kurang baik dipelajari hubungan termal hewan.
Secara umum, thigmothermy dipraktekkan oleh spesies yang telah akses ke radiation.11 surya Kebanyakan penelitian kadal thigmothermy telah dianggap species.12 diurnal terbatas, 13 di antara kadal diurnal, thigmothermy biasanya dilakukan oleh spesies di lingkungan hutan di mana radiasi matahari yang masuk terhambat oleh kanopi pohon. Morgan14 menunjukkan bahwa dalam lingkungan seperti, termal microclimates diskrit penting. Sebaliknya perilaku thigmothermic relatif lebih penting bagi kadal nokturnal, yang tidak menerima masukan radiasi matahari.
Studi sebelumnya dari interaksi termal antara kadal dan lingkungan telah banyak digunakan suhu internal tubuh (Tb) (yaitu kloaka) dan suhu lingkungan (Ta) differential.12, 15-17 Auffenberg15 dan Stevenson16 terkait suhu tubuh dengan ukuran. Para penulis ini menyimpulkan bahwa ukuran yang lebih besar diberikan sebuah Tb lebih besar - Ta diferensial karena inersia termal. Inersia termal didasarkan pada sifat fisik disipasi panas dimana objek yang lebih besar menahan panas lebih lama dari benda-benda yang lebih kecil karena berkurangnya permukaan-ke-volume scaling. Fenomena seperti telah dibuktikan dalam spesies buaya yang masih ada dan telah diusulkan untuk suhu yang tinggi di dinosaurus besar species.2, 18, ​​19
Berbeda dengan karya sebelumnya, makalah ini menyelidiki transmisi panas radiasi menggunakan suhu permukaan tubuh (Tbs). Cowles20 menyarankan bahwa permukaan kulit reptil bisa bertindak sebagai kolektor panas dan dispenser. Oleh karena itu timbul pertanyaan apakah hubungan diidentifikasi sebelumnya antara suhu inti dan ambient mirip dengan perbedaan antara Tbs dan Ta? Percobaan berikut bertujuan untuk mengetahui hubungan antara panjang dan Tb - Tadifferential. Sebuah Tujuan selanjutnya adalah untuk mendapatkan pemahaman yang lebih besar dari heliothermy dan thigmothermy dalam berbagai spesies kadal.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: