Dedifferentiation and cell-cycle re-entry. Totipotency is a characteri terjemahan - Dedifferentiation and cell-cycle re-entry. Totipotency is a characteri Bahasa Indonesia Bagaimana mengatakan

Dedifferentiation and cell-cycle re

Dedifferentiation and cell-cycle re-entry. Totipotency is a characteristic of most plant species, reflecting their potential to build whole new individuals from a group of cells that become reprogrammed under favourable conditions. This attribute has been exploited successfully in tissue culture to establish regeneration protocols of various organs. Even highly specialized plant cells can retain full totipotency, as demonstrated, for example, by the stomatal guard cells of sugar beet ( Beta vulgaris ) from which plants can be regenerated [6]. Irrespective of the tissue type that is used as the source material, at least three main steps towards plant regeneration are required: cellular dedifferentiation, cell-cycle re-entry and induction of redifferentiation.

Dedifferentiation and cell-cycle entry are intimately linked, making it difficult to disentangle both processes at the molecular level. Significant progress in our knowledge has come from studies with protoplast cultures. Plant protoplasts can be obtained from intact tissues by enzymatic removal of the cell wall and, under appropriate conditions, they can be regenerated into intact plants. However, before they can re-enter the cell cycle, protoplasts that originate from differentiated tissues need to undergo an abrupt switch from a fully differentiated to a dedifferentiated status. Evidence indicates that this transition is accompanied by a change in the chromatin structure, thereby altering the portion of the genome that is accessible for transcription (euchromatin) versus the portion that is repressed (heterochromatin) [7].

At the onset of cell division, the proportion of euchromatin increases considerably. It is thought that the retinoblastoma (RB)-E2F pathway is involved in this process, as indicated by the change in chromatin structure of E2F target genes following the dedifferentiation of protoplasts [8]. The RB-E2F pathway is well known for its anticipated role in the activation of the G1-S-specific E2F-DP transcription factors ([Box 3]), but also for its role in remodelling the chromatin structure [9]. Dynamic changes in chromatin structure are primarily orchestrated by post-transcriptional modifications of the histones in nucleosomes [10]. The best-characterized type of histone modification in plants is acetylation by histone acetyltransferases. In maize (Zea mays ), the histone deacetylase RPD3I has been shown to be physically associated with the retinoblastoma-related protein RBR [11]. Together, both proteins probably cooperate in repressing genes that are required for cell-cycle entry [12] (Fig. 1).
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Dedifferentiation and cell-cycle re-entry. Totipotency is a characteristic of most plant species, reflecting their potential to build whole new individuals from a group of cells that become reprogrammed under favourable conditions. This attribute has been exploited successfully in tissue culture to establish regeneration protocols of various organs. Even highly specialized plant cells can retain full totipotency, as demonstrated, for example, by the stomatal guard cells of sugar beet ( Beta vulgaris ) from which plants can be regenerated [6]. Irrespective of the tissue type that is used as the source material, at least three main steps towards plant regeneration are required: cellular dedifferentiation, cell-cycle re-entry and induction of redifferentiation.Dedifferentiation and cell-cycle entry are intimately linked, making it difficult to disentangle both processes at the molecular level. Significant progress in our knowledge has come from studies with protoplast cultures. Plant protoplasts can be obtained from intact tissues by enzymatic removal of the cell wall and, under appropriate conditions, they can be regenerated into intact plants. However, before they can re-enter the cell cycle, protoplasts that originate from differentiated tissues need to undergo an abrupt switch from a fully differentiated to a dedifferentiated status. Evidence indicates that this transition is accompanied by a change in the chromatin structure, thereby altering the portion of the genome that is accessible for transcription (euchromatin) versus the portion that is repressed (heterochromatin) [7].At the onset of cell division, the proportion of euchromatin increases considerably. It is thought that the retinoblastoma (RB)-E2F pathway is involved in this process, as indicated by the change in chromatin structure of E2F target genes following the dedifferentiation of protoplasts [8]. The RB-E2F pathway is well known for its anticipated role in the activation of the G1-S-specific E2F-DP transcription factors ([Box 3]), but also for its role in remodelling the chromatin structure [9]. Dynamic changes in chromatin structure are primarily orchestrated by post-transcriptional modifications of the histones in nucleosomes [10]. The best-characterized type of histone modification in plants is acetylation by histone acetyltransferases. In maize (Zea mays ), the histone deacetylase RPD3I has been shown to be physically associated with the retinoblastoma-related protein RBR [11]. Together, both proteins probably cooperate in repressing genes that are required for cell-cycle entry [12] (Fig. 1).
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Dedifferentiation dan sel-siklus re-entry. Totipotency merupakan karakteristik dari spesies tanaman yang paling, yang mencerminkan potensi mereka untuk membangun individu baru dari sekelompok sel yang menjadi memprogram bawah kondisi yang menguntungkan. Atribut ini telah dimanfaatkan berhasil dalam kultur jaringan untuk membangun protokol regenerasi berbagai organ. Bahkan sel-sel tumbuhan yang sangat khusus dapat mempertahankan totipotency penuh, seperti yang ditunjukkan, misalnya, oleh sel penjaga stomata gula bit (Beta vulgaris) dari mana tanaman dapat diregenerasi [6]. Terlepas dari jenis jaringan yang digunakan sebagai bahan sumber, setidaknya tiga langkah utama menuju regenerasi tanaman yang diperlukan:. Dedifferentiation seluler, sel-siklus re-entry dan induksi redifferentiation

dedifferentiation dan entri sel-siklus yang terkait erat, sehingga sulit untuk menguraikan kedua proses pada tingkat molekuler. Kemajuan yang signifikan dalam pengetahuan kita telah datang dari studi dengan kultur protoplas. Protoplas tanaman dapat diperoleh dari jaringan utuh oleh penghapusan enzimatik dinding sel dan, di bawah kondisi yang tepat, mereka dapat diregenerasi menjadi tanaman utuh. Namun, sebelum mereka dapat kembali memasuki siklus sel, protoplas yang berasal dari jaringan dibedakan perlu menjalani sebuah saklar tiba-tiba dari sepenuhnya dibedakan ke status terdiferensiasi. Bukti menunjukkan bahwa transisi ini disertai dengan perubahan dalam struktur kromatin, sehingga mengubah sebagian dari genom yang dapat diakses untuk transkripsi (eukromatin) versus bagian yang ditekan (heterochromatin) [7].

Pada awal pembelahan sel, proporsi eukromatin meningkatkan jauh. Diperkirakan bahwa retinoblastoma yang (RB) -E2F jalur yang terlibat dalam proses ini, seperti yang ditunjukkan oleh perubahan struktur kromatin target gen E2F mengikuti dedifferentiation protoplas [8]. RB-E2F jalur terkenal karena perannya diantisipasi dalam aktivasi faktor transkripsi E2F-DP G1-S-spesifik ([Box 3]), tetapi juga karena perannya dalam perbaikan struktur kromatin [9]. Perubahan dinamis dalam struktur kromatin terutama diatur oleh modifikasi pasca-transkripsi dari histon di nukleosom [10]. Jenis yang terbaik-ditandai modifikasi histon pada tanaman adalah asetilasi oleh acetyltransferases histon. Pada jagung (Zea mays), yang RPD3I histone deacetylase telah terbukti secara fisik terkait dengan terkait retinoblastoma protein RBR [11]. Bersama-sama, kedua protein mungkin bekerja sama dalam menekan gen yang diperlukan untuk masuk sel-siklus [12] (Gambar. 1).
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: