3. Decision Support for Healthcare DiagnosisDiagnosis errors (includin terjemahan - 3. Decision Support for Healthcare DiagnosisDiagnosis errors (includin Bahasa Indonesia Bagaimana mengatakan

3. Decision Support for Healthcare

3. Decision Support for Healthcare Diagnosis
Diagnosis errors (including missed, wrong, or delayed diagnosis) are a frequent and serious problem in the
healthcare industry. It is estimated that such errors result in death or permanent injury for up to 160,000 U.S.
patients each year. In a recent Johns Hopkins University study examining malpractice claims, researchers found
that claim payments for diagnostic errors added up to $38.8 billion over the time period 1986 to 2010.89 Failure
to fully diagnose a patient’s condition puts the patient at risk of suffering a recurrence of the problem—such as
incurring further damage from another accident caused by, for example, an undiagnosed brain injury.
Misdiagnosis of a patient’s condition can lead to costly, painful, potentially harmful, and inappropriate treatments.
A delay in the diagnosis of a patient can allow an otherwise reversible condition to advance to the point that it is
no longer treatable.
Over the past decade, several decision support systems to aid in healthcare diagnosis have been developed,
including DiagnosisPro®, DXPlain®, First Consult©, PEPID, and Isabel©. A decision support system is an
interactive computer application that aids in decision making by gathering data from a wide range of sources and
presenting that data in a way that aids in decision making. Isabel, one of the more advanced healthcare decision
support systems, is a Web-based system developed in the United Kingdom. Isabel uses key facts from the
patient’s history, physical exam, and laboratory findings to identify the most likely diagnosis based on pattern
matches in the system’s database. The system can interface with electronic medical records systems to obtain
patient data, or the data can be entered manually. Each diagnosis is linked to information in commonly used
medical reference sources such as The 5 Minute Clinical Consult, Oxford Textbook of Medicine, and Medline—
the U.S. National Laboratory of Medicine’s online bibliographic database. Isabel can also suggest bioterrorism
agents that might be responsible for a patient’s symptoms, as well as identify drugs or drug combinations that
might be the cause.90 The cost of using Isabel ranges from a few thousand dollars for a family practice to as much
as $400,000 for a health system.91
United Hospital, a large hospital in St. Paul, Minnesota, recently implemented the Isabel system to help
physicians investigate and diagnose patient cases. The system will integrate directly with the hospital’s electronic
medical record system and physicians will be able to access Isabel from mobile devices.92
On another front, medical researchers at Memorial Sloan-Kettering Cancer Center in New York are busy
feeding data from medical textbooks and journals into IBM’s Watson supercomputer to create a world-class
healthcare diagnostic tool. Watson is the same supercomputer that gained recognition in 2011 for beating the
world’s best players on the TV game show Jeopardy!. Watson is now being programmed to understand plain
language so that it can absorb data about a patient’s symptoms and medical history, form a diagnosis, and suggest
an appropriate course of treatment. When presented with a set of symptoms, Watson will be able to provide
several diagnoses, ranked in order of its confidence.93,94 One incentive hospitals have to adopt such systems is
concern that a failure to adopt new
technology could subject the hospital to liability in cases where it could be shown that adoption of the technology
would not have been overly costly and could have prevented patient injury.95
Discussion Questions
1. What concerns might a physician have about using a decision support system such as Isabel or Watson to make
a medical diagnosis? How might those concerns be alleviated?
2. Is it possible that in a decade this type of technology could be easily accessible by laypeople who could then
perform self-diagnosis, thus helping to reduce the cost of medical care?
3. Does the use of decision support systems to support healthcare decisions seem like an effective way to reduce
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
3. keputusan dukungan untuk Diagnosis KesehatanKesalahan diagnosis (termasuk diagnosis tidak terjawab, salah atau tertunda) yang merupakan masalah yang serius dan sering diindustri kesehatan. Diperkirakan bahwa kesalahan tersebut mengakibatkan kematian atau permanen cedera untuk hingga 160.000 U.S.pasien setiap tahun. Dalam hari Johns Hopkins University studi memeriksa malpraktik klaim, para peneliti menemukanyang mengklaim pembayaran untuk kesalahan diagnostik menambahkan hingga $38.8 milyar selama periode 1986 gagal 2010.89untuk sepenuhnya mendiagnosa kondisi pasien menempatkan pasien pada risiko menderita kambuhnya masalah — sepertimenimbulkan kerusakan lebih lanjut dari lain kecelakaan disebabkan oleh, misalnya, cedera otak terdiagnosis.Misdiagnosis kondisi pasien dapat menyebabkan perawatan mahal, menyakitkan, berpotensi berbahaya dan tidak pantas.Keterlambatan dalam diagnosis pasien dapat memungkinkan kondisi sebaliknya reversibel untuk maju ke titik bahwatidak diobati.Selama dekade terakhir, beberapa sistem dukungan pengambilan keputusan untuk membantu dalam diagnosis kesehatan telah dikembangkan,termasuk DiagnosisPro ®, DXPlain ®, pertama berkonsultasi ©, PEPID, dan Isabel ©. Sistem pendukung keputusan adalahaplikasi komputer interaktif yang membantu dalam pengambilan keputusan oleh mengumpulkan data dari berbagai sumber danmenyajikan data dengan cara yang membantu dalam pengambilan keputusan. Isabel, salah satu keputusan kesehatan lebih majumendukung sistem, adalah sebuah sistem berbasis Web yang dikembangkan di Britania Raya. Isabel menggunakan fakta-fakta kunci darisejarah, ujian fisik, dan hasil labolatorium untuk mengidentifikasi kemungkinan diagnosis yang didasarkan pada pola pasienpertandingan dalam sistem database. Sistem dapat antarmuka dengan sistem elektronik catatan medis untuk memperolehdata pasien, atau data dapat dimasukkan secara manual. Diagnosis masing-masing terkait dengan informasi digunakansumber referensi medis seperti The 5 menit klinis berkonsultasi, Oxford buku kedokteran dan Medline —US National Laboratory of Medicine di database Bibliografi online. Isabel juga dapat menyarankan bioterorismeagen yang mungkin bertanggung jawab pasien gejala, serta mengidentifikasi obat-obatan atau obat kombinasi yangmungkin cause.90 biaya menggunakan Isabel berkisar dari beberapa ribu dolar untuk praktek keluarga untuk sebanyaksebagai $400.000 untuk system.91 KesehatanInggris rumah sakit, rumah sakit besar di St. Paul, Minnesota, baru-baru ini menerapkan sistem Isabel untuk membantudokter menyelidiki dan mendiagnosis kasus pasien. Sistem akan mengintegrasikan secara langsung dengan rumah sakit elektroniksistem catatan medis dan dokter akan dapat mengakses Isabel dari HP devices.92Di tempat lain, peneliti medis di Memorial Sloan-Kettering Cancer Center di New York sedang sibukmemberi makan data dari medis buku dan jurnal ke IBM Watson superkomputer untuk menciptakan kelas duniaKesehatan alat diagnostik. Watson adalah superkomputer sama yang mendapat pengakuan di 2011 untuk pemukulanpemain terbaik dunia pada permainan TV menunjukkan bahaya!. Watson sekarang menjadi diprogram untuk memahami polosbahasa sehingga dapat menyerap data tentang pasien gejala dan sejarah medis, membentuk diagnosis, dan menyarankanprogram studi yang tepat perawatan. Ketika dihadapkan dengan satu set gejala, Watson akan mampu menyediakanbeberapa diagnosa, peringkat dalam urutan yang confidence.93,94 salah satu rumah sakit insentif memiliki untuk mengadopsi sistem seperti inikeprihatinan bahwa kegagalan untuk mengadopsi baruteknologi dapat rumah sakit kewajiban dalam kasus-kasus di mana ia bisa menunjukkan bahwa adopsi teknologitidak akan menjadi terlalu mahal dan dapat mencegah pasien injury.95Pertanyaan-pertanyaan diskusi1. apa masalah mungkin dokter memiliki tentang menggunakan sistem pendukung keputusan seperti Isabel atau Watson untuk membuatdiagnosis medis? Bagaimana mungkin hal tersebut bisa dikurangi?2. Apakah mungkin bahwa dalam satu dekade jenis teknologi ini bisa menjadi mudah diakses oleh para umat awam yang bisa kemudianmelakukan diagnosis diri, sehingga membantu untuk mengurangi biaya perawatan medis?3. Apakah penggunaan sistem dukungan pengambilan keputusan untuk mendukung keputusan healthcare tampak seperti cara yang efektif untuk mengurangi
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: