Dupont used simulation to avoid costly capital expenditures for rail c terjemahan - Dupont used simulation to avoid costly capital expenditures for rail c Bahasa Indonesia Bagaimana mengatakan

Dupont used simulation to avoid cos

Dupont used simulation to avoid costly capital expenditures for rail car fleets as customer demand changed. Demand changes could involve rail car purchases, better management of the existing fleet, or possibly fleet size reduction. The old analysis method, past experience, and conventional wisdom led managers to feel that the fleet size should be increased. The real problem was that Dupont was not using its specialized rail car efficiently or effectively, not that there were not enough of them. There was immense variability in production output and transit cycle time, maintenance scheduling, and order sequencing. This made it difficult, if not impossible, to handle all the factors in a cohesive and useful manner leading to a good decision.
The fleets of specialized rail cars are used to transport bulk chemicals from Dupont to manufactures. The cost of a rail car can vary from $80,000 for a standard tank car to more than $250,000 for a specialized tanker. Because of the high capital expense, effective and efficient use of the existing fleet is a must.
Instead of simply purchasing more rail cars, Dupont developed a ProModel simulation model (ProModel Corporation, Orem, Utah, www.promodel.com) that represented the firm's entire transportation system. It accurately modeled the variability inherent in chemical production, tank car availability, transportation time, loading and unloading time, and customer demand. A simulation model can provide a virtual environment in which experimentation with various policies that affect the physical transportation system can be performed before real changes are made. Changes can be made quickly and inexpensively in a simulated word because relationships among the components of the system are represented mathematically. It is not necessary to purchase expensive rail cars to determine the effect.
ProModel allowed the company to construct simulation models easily and quickly (the first one took just two weeks to develop) and to conduct what-if analysis. It also includes extensive graphics and animation capabilities. The simulation involved the entire rail transportations system. Many scenarios were developed, and experiments were run. Dupont experimented with a number of conditions and scheduling policies. Development of the simulation model helped the decision-making team understand the entire problem (see Banks et al.;2001;Evans and Olson, 2002;Harrell et al.,2000;Ross,2003;Sheila, Tadikamalla, and Ceric, 2003). The ProModel simulation accurately represented the variability associated with production, availability of tank cars, transportation times, and unloading at the customer site. With the model, the entire national distribution system can be displayed graphically (visual simulation) under a variety of conditions-especially the current ones and forecasted customer demand. The simulation model helped decision-makers identify bottlenecks and other problems in the real system. By experimenting with the simulation model, the real issues were easily identified. The results convinced decisionmakers that a capital expense was unjustified. In fact, the needed customer deliveries could still be made after downsizing the fleet. Simulation drove this point home hard. After only two weeks of analysis, Dupont saved $500,000 in capital investment that year. Following the proven success of this simulation model, Dupont has started performing logistics modeling on a variety of product lines, crossing division boundaries and political domains. Simulation dramatically improved Dupont's logistics. The next step focused on international logistics and logistics support for new market development. Saving in these areas can be substantially higher.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Dupont used simulation to avoid costly capital expenditures for rail car fleets as customer demand changed. Demand changes could involve rail car purchases, better management of the existing fleet, or possibly fleet size reduction. The old analysis method, past experience, and conventional wisdom led managers to feel that the fleet size should be increased. The real problem was that Dupont was not using its specialized rail car efficiently or effectively, not that there were not enough of them. There was immense variability in production output and transit cycle time, maintenance scheduling, and order sequencing. This made it difficult, if not impossible, to handle all the factors in a cohesive and useful manner leading to a good decision.The fleets of specialized rail cars are used to transport bulk chemicals from Dupont to manufactures. The cost of a rail car can vary from $80,000 for a standard tank car to more than $250,000 for a specialized tanker. Because of the high capital expense, effective and efficient use of the existing fleet is a must.Instead of simply purchasing more rail cars, Dupont developed a ProModel simulation model (ProModel Corporation, Orem, Utah, www.promodel.com) that represented the firm's entire transportation system. It accurately modeled the variability inherent in chemical production, tank car availability, transportation time, loading and unloading time, and customer demand. A simulation model can provide a virtual environment in which experimentation with various policies that affect the physical transportation system can be performed before real changes are made. Changes can be made quickly and inexpensively in a simulated word because relationships among the components of the system are represented mathematically. It is not necessary to purchase expensive rail cars to determine the effect.ProModel allowed the company to construct simulation models easily and quickly (the first one took just two weeks to develop) and to conduct what-if analysis. It also includes extensive graphics and animation capabilities. The simulation involved the entire rail transportations system. Many scenarios were developed, and experiments were run. Dupont experimented with a number of conditions and scheduling policies. Development of the simulation model helped the decision-making team understand the entire problem (see Banks et al.;2001;Evans and Olson, 2002;Harrell et al.,2000;Ross,2003;Sheila, Tadikamalla, and Ceric, 2003). The ProModel simulation accurately represented the variability associated with production, availability of tank cars, transportation times, and unloading at the customer site. With the model, the entire national distribution system can be displayed graphically (visual simulation) under a variety of conditions-especially the current ones and forecasted customer demand. The simulation model helped decision-makers identify bottlenecks and other problems in the real system. By experimenting with the simulation model, the real issues were easily identified. The results convinced decisionmakers that a capital expense was unjustified. In fact, the needed customer deliveries could still be made after downsizing the fleet. Simulation drove this point home hard. After only two weeks of analysis, Dupont saved $500,000 in capital investment that year. Following the proven success of this simulation model, Dupont has started performing logistics modeling on a variety of product lines, crossing division boundaries and political domains. Simulation dramatically improved Dupont's logistics. The next step focused on international logistics and logistics support for new market development. Saving in these areas can be substantially higher.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Dupont digunakan simulasi untuk menghindari belanja modal mahal untuk armada mobil rel sebagai permintaan pelanggan berubah. Perubahan permintaan dapat melibatkan pembelian mobil rel, manajemen yang lebih baik dari armada yang ada, atau mungkin armada pengurangan ukuran. Metode lama analisis, pengalaman masa lalu, dan manajer kebijaksanaan konvensional menyebabkan merasa bahwa ukuran armada harus ditingkatkan. Masalah sebenarnya adalah bahwa Dupont tidak menggunakan mobil rel khusus yang efisien atau efektif, tidak ada tidak cukup dari mereka. Ada variabilitas besar dalam hasil produksi dan transit waktu siklus, penjadwalan pemeliharaan, dan ketertiban sequencing. Hal ini membuat sulit, jika bukan tidak mungkin, untuk menangani semua faktor dalam cara yang kohesif dan berguna yang mengarah ke keputusan yang baik.
The armada mobil rel khusus digunakan untuk mengangkut bahan kimia dari Dupont ke manufaktur. Biaya mobil rel dapat bervariasi dari $ 80.000 untuk mobil tangki standar untuk lebih dari $ 250.000 untuk kapal tanker khusus. Karena biaya modal yang tinggi, penggunaan yang efektif dan efisien dari armada yang ada adalah suatu keharusan.
Bukan hanya membeli mobil rel lebih, Dupont mengembangkan model simulasi ProModel (ProModel Corporation, Orem, Utah, www.promodel.com) yang mewakili seluruh sistem transportasi perusahaan. Ini secara akurat dimodelkan variabilitas yang melekat dalam produksi bahan kimia, ketersediaan mobil tangki, waktu transportasi, waktu bongkar muat, dan permintaan pelanggan. Sebuah model simulasi dapat memberikan lingkungan virtual di mana eksperimen dengan berbagai kebijakan yang mempengaruhi sistem transportasi fisik dapat dilakukan sebelum perubahan nyata dibuat. Perubahan dapat dilakukan dengan cepat dan murah dalam kata simulasi karena hubungan antara komponen-komponen dari sistem yang diwakili matematis. Hal ini tidak perlu untuk membeli mobil rel mahal untuk mengetahui pengaruh.
ProModel memungkinkan perusahaan untuk membangun model simulasi dengan mudah dan cepat (yang pertama mengambil hanya dua minggu untuk mengembangkan) dan untuk melakukan apa-jika analisis. Ini juga termasuk grafis yang luas dan kemampuan animasi. Simulasi melibatkan sistem kereta api transportasi seluruh. Banyak skenario yang dikembangkan, dan percobaan dijalankan. Dupont bereksperimen dengan sejumlah kondisi dan kebijakan penjadwalan. Pengembangan model simulasi membantu tim pengambilan keputusan memahami seluruh masalah (lihat Bank et al;. 2001; Evans dan Olson, 2002;. Harrell et al, 2000; Ross, 2003; Sheila, Tadikamalla, dan Ceric, 2003) . The ProModel simulasi akurat mewakili variabilitas terkait dengan produksi, ketersediaan mobil tangki, kali transportasi, muat di lokasi pelanggan. Dengan model, seluruh sistem distribusi nasional dapat ditampilkan secara grafis (simulasi visual) di bawah berbagai kondisi-terutama yang saat ini dan permintaan pelanggan diperkirakan. Model simulasi membantu pembuat keputusan mengidentifikasi hambatan dan masalah lainnya dalam sistem nyata. Dengan bereksperimen dengan model simulasi, isu-isu nyata yang mudah diidentifikasi. Hasil meyakinkan pengambil keputusan bahwa biaya modal adalah dibenarkan. Bahkan, pengiriman pelanggan diperlukan masih bisa dilakukan setelah perampingan armada. Simulasi melaju titik ini rumah keras. Setelah hanya dua minggu analisis, Dupont disimpan $ 500.000 pada investasi modal tahun itu. Menyusul keberhasilan terbukti model simulasi ini, Dupont telah mulai melakukan pemodelan logistik pada berbagai lini produk, melintasi batas-batas pembagian dan domain politik. Simulasi secara dramatis meningkatkan logistik Dupont. Langkah selanjutnya difokuskan pada logistik dan logistik internasional dukungan untuk pengembangan pasar baru. Menyimpan di daerah ini dapat menjadi jauh lebih tinggi.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: