a synergistic effect between parboiling and extrusion-cooking. This is terjemahan - a synergistic effect between parboiling and extrusion-cooking. This is Bahasa Indonesia Bagaimana mengatakan

a synergistic effect between parboi

a synergistic effect between parboiling and extrusion-cooking. This is confirmed by analysis of the products released after 24 h exposure to pullulanase. The chromatographic profile from pasta P2 again closely resembled that of PRF, whereas the products of prolonged pullulanase action on pasta P3 indicated a modest release of hydrolytic intermediates and the presence of minimal amounts of di- and trisaccharides.
This may stem from the occurrence of organized clusters within the starch structure, proposed to stem from extrusion-cooking of a pre-treated rice flour (Marti et al., 2010). These organized regions, characterized by a poorly packed external region and by a compact core, may be responsible for the higher RS content in extrusion-cooked pasta in comparison to pasta made by conven- tional extrusion, as discussed in what follows and in agreement with reports indicating that starch containing both amorphous and partially ordered regions is digested slowly (Guraya, James & Champagne, 2001; Miao, Jiang, & Zhang, 2009).


3.1.2. Pasting properties of starch in rice pasta
The pasting profiles in Fig. 4 may provide information on macro- molecule arrangement in the products considered here. Samples P2 and P3 had the lowest pasting temperature and P1 the highest, a result that could be related to the strength of bonds in the starchy network (Eliason & Karlson, 1983). Only sample P1 showed a peak viscosity (at ∼90 ◦ C), suggesting the presence of starch granules with a high swelling capacity, as previously observed in rice flours (Marti et al., 2010).
During the holding period at 95 ◦ C, the product slurries were subjected to high temperatures and mechanical shear, causing starch granule disruption and amylose leaching, which led in turn to a slight decrease in viscosity in P1, whereas viscosity in P2 and P3 continued to increase while holding these samples at 95 ◦ C. Upon cooling, P1 gave the highest setback values, suggesting the highest retrogradation tendency among all the samples, followed by P3 and P2 in the order. Also noteworthy is the absence of viscosity changes in the starch paste formed by samples P2 and P3 while being stirred at 50 ◦ C, in contrast with the decreased viscosity observed for P1, that stems from physical breakdown of the starch gel formed upon cooling of this particular sample.

3.2. Properties of protein network in the starting materials and in uncooked pasta

Structural features of proteins in rice pasta were evaluated by extraction in buffers with different dissociating ability towards covalent and non-covalent interprotein bonds, and by accessibil- ity of specific residues under the same conditions. As shown in Fig. 5A, protein solubility in buffer was low in P1 (≤3.2 mg/g pasta), and almost nil in P2 and P3, confirming aggregation of soluble protein components (albumins and globulins) upon parboiling (Bhattacharya, 2004). Addition of urea to the buffer/saline extrac- tant resulted in a significant increase in solubilized protein from all samples, suggesting that hydrophobic interactions are relevant to the structure of whatever protein matrix in rice pasta. A simi- lar behaviour was also detected in commercial rice and corn pasta (Mariotti, Iametti, Cappa, Rasmussen, & Lucisano, 2011) and in amaranth-enriched pasta (Cabrera-Chávez et al., 2012). When both urea and DTT were present in the extraction medium, the amount of soluble proteins increased further, most notably in samples (P2 and P3) prepared from PRF. This suggests that inter-protein disulphides play a fundamental role in the structure of the protein network in
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Efek sinergis antara pratanak dan ekstrusi-memasak. Ini adalah confirmed oleh analisis produk dirilis setelah paparan 24 h pullulanase. Kromatografi profile dari pasta P2 lagi sangat mirip bahwa dari PRF, Sedangkan produk yang berkepanjangan pullulanase tindakan pada pasta P3 ditunjukkan rilis intermediet hidrolitik dan kehadiran minimal jumlah di - dan trisaccharides.
ini mungkin berasal dari terjadinya terorganisir cluster dalam struktur Pati, mengusulkan berasal dari ekstrusi-memasak dari pra-diobati beras flour (Marti et al., 2010). Daerah ini terorganisir, ditandai oleh daerah eksternal buruk makan dan inti yang kompak, mungkin bertanggung jawab atas isi RS lebih tinggi dalam pasta dimasak ekstrusi dibandingkan dengan pasta dibuat oleh mengkonversikannya-mem ekstrusi, seperti yang dibahas dalam apa yang berikut dan sesuai dengan laporan yang menunjukkan bahwa sebagian memerintahkan daerah Pati baik amorf yang berisi dan dicerna perlahan-lahan (Guraya, James & sampanye, 2001; Miao, Jiang, & Zhang, 2009).


3.1.2. Menyisipkan sifat Pati dalam pasta nasi
profiles paste di gambar 4 dapat memberikan informasi tentang pengaturan makro-molekul dalam produk dipertimbangkan di sini. Sampel P2 dan P3 memiliki paste suhu terendah dan P1 tertinggi, hasil yang bisa berhubungan dengan kekuatan Obligasi dalam jaringan tepung (Eliason & Karlson, 1983). Hanya mencicipi P1 menunjukkan viskositas puncak (di cita ∼90 C), menunjukkan adanya Pati butiran dengan pembengkakan kapasitas tinggi, seperti sebelumnya diamati dalam beras flours (Marti et al., 2010).
selama periode memegang di cita 95 C, bubur produk yang dikenakan suhu tinggi dan geser mekanis, menyebabkan gangguan granula pati dan amilosa pencucian, yang mengarah pada gilirannya sedikit penurunan viskositas di P1, sedangkan viskositas di P2 dan P3 terus meningkat sambil memegang sampel ini di 95 cita C. Setelah pendinginan, P1 memberikan nilai tertinggi kemunduran, menunjukkan kecenderungan retrogradation tertinggi di antara semua sampel, diikuti oleh P3 dan P2 dalam urutan. Juga diperhatikan adalah tidak adanya perubahan viskositas pasta tepung yang dibentuk oleh sampel P2 dan P3 sementara diaduk di cita 50 C, dengan penurunan viskositas diamati untuk P1, yang berasal dari kerusakan fisik gel Pati terbentuk pada pendinginan ini sampel tertentu.

3.2. Sifat dari protein jaringan dalam bahan awal dan pasta mentah

Ciri struktur protein dalam pasta nasi dievaluasi oleh ekstraksi dalam buffer dengan kemampuan melepaskan berbeda terhadap jari dan non kovalen Obligasi interprotein, dan accessibil-ity dari residu specific dalam kondisi yang sama. Seperti yang ditunjukkan dalam gambar 5A, protein kelarutan dalam buffer adalah rendah P1 (pasta mg/g ≤3.2), dan hampir nol di P2 dan P3, confirming gabungan dari komponen protein yang larut (albumins dan globulins) berdasarkan pratanak (Bhattacharya, 2004). Penambahan urea untuk penyangga saline extrac membelajarkan siswa secara menghasilkan peningkatan significant salubilized protein dari semua sampel, menyarankan bahwa interaksi hidrofobik relevan dengan struktur matriks protein apapun dalam pasta nasi. Perilaku simi-lar juga terdeteksi dalam komersial pasta beras dan jagung (Mariotti, Iametti, Cappa, Rasmussen, & Lucisano, 2011) dan dalam diperkaya amaranth pasta (Cabrera-Chávez et al., 2012). Ketika urea dan DTT hadir dalam medium ekstraksi, jumlah larut protein meningkat lebih lanjut, terutama dalam sampel (P2 dan P3) disiapkan dari PRF. Hal ini menunjukkan bahwa protein antar disulphides memainkan peran yang mendasar dalam struktur jaringan protein di
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
a synergistic effect between parboiling and extrusion-cooking. This is confirmed by analysis of the products released after 24 h exposure to pullulanase. The chromatographic profile from pasta P2 again closely resembled that of PRF, whereas the products of prolonged pullulanase action on pasta P3 indicated a modest release of hydrolytic intermediates and the presence of minimal amounts of di- and trisaccharides.
This may stem from the occurrence of organized clusters within the starch structure, proposed to stem from extrusion-cooking of a pre-treated rice flour (Marti et al., 2010). These organized regions, characterized by a poorly packed external region and by a compact core, may be responsible for the higher RS content in extrusion-cooked pasta in comparison to pasta made by conven- tional extrusion, as discussed in what follows and in agreement with reports indicating that starch containing both amorphous and partially ordered regions is digested slowly (Guraya, James & Champagne, 2001; Miao, Jiang, & Zhang, 2009).


3.1.2. Pasting properties of starch in rice pasta
The pasting profiles in Fig. 4 may provide information on macro- molecule arrangement in the products considered here. Samples P2 and P3 had the lowest pasting temperature and P1 the highest, a result that could be related to the strength of bonds in the starchy network (Eliason & Karlson, 1983). Only sample P1 showed a peak viscosity (at ∼90 ◦ C), suggesting the presence of starch granules with a high swelling capacity, as previously observed in rice flours (Marti et al., 2010).
During the holding period at 95 ◦ C, the product slurries were subjected to high temperatures and mechanical shear, causing starch granule disruption and amylose leaching, which led in turn to a slight decrease in viscosity in P1, whereas viscosity in P2 and P3 continued to increase while holding these samples at 95 ◦ C. Upon cooling, P1 gave the highest setback values, suggesting the highest retrogradation tendency among all the samples, followed by P3 and P2 in the order. Also noteworthy is the absence of viscosity changes in the starch paste formed by samples P2 and P3 while being stirred at 50 ◦ C, in contrast with the decreased viscosity observed for P1, that stems from physical breakdown of the starch gel formed upon cooling of this particular sample.

3.2. Properties of protein network in the starting materials and in uncooked pasta

Structural features of proteins in rice pasta were evaluated by extraction in buffers with different dissociating ability towards covalent and non-covalent interprotein bonds, and by accessibil- ity of specific residues under the same conditions. As shown in Fig. 5A, protein solubility in buffer was low in P1 (≤3.2 mg/g pasta), and almost nil in P2 and P3, confirming aggregation of soluble protein components (albumins and globulins) upon parboiling (Bhattacharya, 2004). Addition of urea to the buffer/saline extrac- tant resulted in a significant increase in solubilized protein from all samples, suggesting that hydrophobic interactions are relevant to the structure of whatever protein matrix in rice pasta. A simi- lar behaviour was also detected in commercial rice and corn pasta (Mariotti, Iametti, Cappa, Rasmussen, & Lucisano, 2011) and in amaranth-enriched pasta (Cabrera-Chávez et al., 2012). When both urea and DTT were present in the extraction medium, the amount of soluble proteins increased further, most notably in samples (P2 and P3) prepared from PRF. This suggests that inter-protein disulphides play a fundamental role in the structure of the protein network in
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: