Hasil (
Bahasa Indonesia) 1:
[Salinan]Disalin!
lipatan yang ditunjukkan lebih tinggi. Ada kesepakatan umum dengan Triantafyllou's@13 # percobaan pada dua dimensi terengah-engah danbulu-bulu foil. Menarik untuk dicatat bahwa ganda mengepakkan Tampilkankecenderungan untuk mencapai efisiensi yang lebih tinggi dalam modus melambai. Karenahidung pameran osilasi yawing dalam modus melambaikan tangan,ini adalah hipotesis bahwa ini gudang pusaran yang menurunkan hambatanpada tubuh kaku karena lapisan batas interaksi, atau meningkatkandorong ~ oleh peningkatan kecepatan jet! karena pusaran diproduksioleh mengepak. Jalur ini berpikir menyebabkan percobaan kedua.Efisiensi plot dalam gambar 18 termasuk drag silinder. Thekental dan koefisien drag bentuk silinder 0.145. Kapanini adalah diperhitungkan, efisiensi foil mengepak sendirianlebih tinggi seperti ditunjukkan pada gambar 19. Pada nilai-nilai yang lebih rendah dari St, efisiensimemiliki ketergantungan yang kuat pada f.Semua pengukuran koefisien kekuatan aksial karena tunggal danDual-mengepak ekor ditampilkan dalam Fig. 20. Keduanya dorong dan tarikmemproduksi kasus juga disertakan. Tren menampilkan kepekaan f.F52.6 dan 6.2 Hz, foil tunggal tidak menghasilkan dorong bersih.Namun, itu di f54.24 Hz, mana flaps tunggal dan ganda dikedua mode mengikuti tren serupa. Tersandung silinderlapisan batas tidak berpengaruh pada dorongan yang dihasilkan. Datamenunjukkan bahwa dorongan yang dihasilkan diatur oleh St, f, dan jumlahFlap. Modus mengepak memiliki efek kecil. Menurut Triantafyllou~Pvt. Comm. 1997!, the ‘‘robotuna’’ vortex cores makean angle of 10–15 deg to the forward direction. However, thewake angle is 140 deg in the present case. The wider wake growthin the present case of a rigid cylinder requires a closer examination.3.3.3 Sensitivity to Strouhal Number and Flapping Frequency:Single Foil Case. Figure 21 shows the time-averagedcoefficients of axial force and pitching moment for one single foilattached to the rigid body in the presence of the dividing plate.The coefficients do not depend solely on St, they also depend onf. The sign of the axial force and yawing moment change whenf54.24 Hz. For the single flap, the higher sensitivity of ca and cmto St at f54.24 Hz can be further demonstrated by examining theunsteady behavior. Figures 13 and 14 show that a peculiar aspectof the fish propulsion and maneuvering mechanism is the fact thatlarge unsteady forces are produced to generate a range of timeaveragedlevels. We believe that this unsteady behavior holds thekey to its propulsion and maneuvering mechanism and the longtime-averaged values do not clarify this. The maximum and minimumvalues within a cycle of the time signatures of ca and cm(y)are expressed asy5ea~St!n, (11)where the exponents a and n are characteristics of f. The sensitivityQ is then given asQ5nea~St!n21. (12)The values of Qa and Qm are calculated at St50.3 as shown inFig. 22. The sensitivity of the unsteady mechanism is highest atf54.237 Hz. The cause of this sensitivity to f is not well understood.Triantafyllou and coworkers have not examined momentsand have not noticed such dependence on (St, f ). We propose thatan interaction between the vortex shedding from the cylinder andthe flapping foil is causing an instability in the vortex train. AnotherStrouhal number involving the length of the cylinder, amplitudeof its head swaying, and f are likely involved. The result is a catastrophic switch from a regular Karman train to a negativeKarman train. Further work is needed to verify this hypothesis.3.4 Vortex Shedding: Vorticity-Velocity Vector Maps3.4.1 Vorticity-Velocity Vector Maps. The vorticity-velocityvector measurements of the vortex shedding process from the tailflapping foils, phase matched to its motion, were carried out at aflow speed of 20 cm/s. Their maps in the axial ~diametral! midplane(z50) are shown in Figs. 23, 24, and 25 for clapping,waving and clapping modes, respectively ~phase is given by t*5tU` /D)d50. Similarly, the phase-matched vorticity-velocityvector maps in the cross-stream plane at the trailing edge of theflap (x/D50.066) are shown in Figs. 26 and 27 for the wavingand clapping modes, respectively. Such maps were used to computecirculation values of the vortices by two methods: by calculatingvelocity line integrals and vorticity area integrals. The distributionsof circulation of the axial vortex generated at the flap tipare shown in Figs. 28 and 29 for x/D50.0656 and 0.5577, respectively.The two methods of circulation calculation, based onvorticity-area and velocity-line integrals, are in reasonable agreement.Note that within a short length after formation (x/D>0.5), the absolute value of the minimum circulation hasdropped by a factor of 3. Measurement resolution is higher in Fig.23. This figure captures the radially far-flung vortices. The mapsin Figs. 23, 24, and 25 show the jets between vortex pairs whichgive rise to thrust. The information in Figs. 26 and 27 has beenused in Fig. 30 to depict the trajectory of the axial vortex schematicallyand the effect of the divider on it. The vortex arrays andthe mechanism of thrust and yawing moment are depicted schematicallyin Figs. 33 and 34, for clapping and waving modes,respectively.Figures 24 and 25 indicate that, in the clapping mode, the twoflaps produce arrays of vortices that are mirror images. They producea net thrust but no net maneuvering cross-stream forces ~Fig.33!. On the other hand, in the waving mode, the two arrays ofvortices from the two flaps are staggered in the streamwise direction.Due to this fact, the waving mode produces both axial andcross-stream forces ~Fig. 34!. The vortex shedding process is
Sedang diterjemahkan, harap tunggu..
