All multi-item constructs were represented as composite items calculat terjemahan - All multi-item constructs were represented as composite items calculat Bahasa Indonesia Bagaimana mengatakan

All multi-item constructs were repr

All multi-item constructs were represented as composite items calculated as an average of
the original items(Table II) to reducemeasurement error (Ittner and Larcker, 2001). Before
the composite items were calculated, their reliability and validity were investigated. Two
items (i.e. quality costing, which is within the SMA strategic costing dimension; and
valuation of customers as assets, which is within the SMA customer accounting
dimension) were dropped from further analysis due to their low internal reliability. The
remaining items have all been included in the computation of composite items.
Prior to cluster analysis, to facilitate interpretation, all variables were standardized.
In order to derive clusters of companies that are similar within groups and remote
between groups a widely recommended two-step cluster analysis procedure was
applied (Hair et al., 1998; Ketchen and Shook, 1996; Ketchen et al., 1993). The objective
of the first step is to determine a meaningful number of clusters (Jung et al., 2003).
Following Ketchen and Shook (1996), several hierarchical cluster procedures were
deployed. Visual inspection of the dendrograms produced, together with the
agglomeration coefficients suggested a convergence towards a six cluster solution.
In the second stage, the non-hierarchical K-means cluster procedure was employed.
The K-means procedure is an iterative partitioning method that initially divides
observations into a predetermined number of clusters (Slater and Olson, 2001). Based
on the hierarchical procedure undertaken, the predetermined number of clusters was
set at six. Contrary to hierarchical methods, non-hierarchical methods allow multiple
data analysis iterations, thus the final solution optimizes within-cluster homogeneity
and between-cluster heterogeneity (Ketchen and Shook, 1996).
A validation examination of the derived clusters was also undertaken. Without
validation, one cannot be confident that a meaningful and useful set of clusters has been
derived (Ketchen and Shook, 1996), as they may represent mere statistical artefacts
(Ketchen et al., 1993). First, to face validate the derived clusters, we developed a
description and label for each of the clusters (shown in the next section). This step
signifies the synthesising of quantitative findings into qualitative gestalts (Slater and
Olson, 2001). Second, to appraise external validity (Ketchen and Shook, 1996),
we examined whether themembers of each cluster exhibit characteristics that correspond
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
All multi-item constructs were represented as composite items calculated as an average ofthe original items(Table II) to reducemeasurement error (Ittner and Larcker, 2001). Beforethe composite items were calculated, their reliability and validity were investigated. Twoitems (i.e. quality costing, which is within the SMA strategic costing dimension; andvaluation of customers as assets, which is within the SMA customer accountingdimension) were dropped from further analysis due to their low internal reliability. Theremaining items have all been included in the computation of composite items.Prior to cluster analysis, to facilitate interpretation, all variables were standardized.In order to derive clusters of companies that are similar within groups and remotebetween groups a widely recommended two-step cluster analysis procedure wasapplied (Hair et al., 1998; Ketchen and Shook, 1996; Ketchen et al., 1993). The objectiveof the first step is to determine a meaningful number of clusters (Jung et al., 2003).Following Ketchen and Shook (1996), several hierarchical cluster procedures weredeployed. Visual inspection of the dendrograms produced, together with theagglomeration coefficients suggested a convergence towards a six cluster solution.In the second stage, the non-hierarchical K-means cluster procedure was employed.The K-means procedure is an iterative partitioning method that initially dividesobservations into a predetermined number of clusters (Slater and Olson, 2001). Basedon the hierarchical procedure undertaken, the predetermined number of clusters wasset at six. Contrary to hierarchical methods, non-hierarchical methods allow multipledata analysis iterations, thus the final solution optimizes within-cluster homogeneityand between-cluster heterogeneity (Ketchen and Shook, 1996).A validation examination of the derived clusters was also undertaken. Withoutvalidation, one cannot be confident that a meaningful and useful set of clusters has beenderived (Ketchen and Shook, 1996), as they may represent mere statistical artefacts(Ketchen et al., 1993). First, to face validate the derived clusters, we developed adescription and label for each of the clusters (shown in the next section). This stepsignifies the synthesising of quantitative findings into qualitative gestalts (Slater andOlson, 2001). Second, to appraise external validity (Ketchen and Shook, 1996),we examined whether themembers of each cluster exhibit characteristics that correspond
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Semua multi-item konstruksi yang direpresentasikan sebagai item komposit dihitung sebagai rata-rata
item asli (Tabel II) untuk reducemeasurement error (Ittner dan Larcker, 2001). Sebelum
item komposit dihitung, keandalan dan validitas mereka diselidiki. Dua
item (yaitu kualitas biaya, yang berada dalam dimensi strategis SMA biaya, dan
penilaian pelanggan sebagai aset, yang dalam akuntansi SMA pelanggan
dimensi) dijatuhkan dari analisis lebih lanjut karena kehandalan internal mereka rendah. Para
item yang tersisa semuanya telah dimasukkan dalam perhitungan item komposit.
Sebelum cluster analisis, untuk memfasilitasi interpretasi, semua variabel yang standar.
Dalam rangka untuk memperoleh kelompok perusahaan yang sama dalam kelompok dan remote
antara kelompok yang banyak direkomendasikan dua langkah Prosedur analisis cluster
diterapkan (Hair et al, 1998;. Ketchen dan Shook, 1996; Ketchen et al., 1993). Tujuan
dari langkah pertama adalah untuk menentukan jumlah bermakna cluster (Jung et al., 2003).
Setelah Ketchen dan Shook (1996), beberapa prosedur klaster hirarkis yang
dikerahkan. Inspeksi visual dari dendrogram yang dihasilkan, bersama-sama dengan
koefisien aglomerasi menyarankan konvergensi menuju solusi enam klaster.
Pada tahap kedua, K-berarti prosedur klaster dipekerjakan. non-hirarkis
The K-berarti prosedur merupakan metode partisi berulang yang awalnya membagi
pengamatan menjadi jumlah yang telah ditetapkan cluster (Slater dan Olson, 2001). Berdasarkan
pada prosedur hirarkis yang dilakukan, dengan jumlah yang telah ditetapkan cluster yang
ditetapkan pada enam. Berlawanan dengan metode hirarkis, metode non-hirarkis memungkinkan beberapa
iterasi analisis data, sehingga solusi akhir mengoptimalkan dalam cluster homogenitas
dan heterogenitas antara cluster (Ketchen dan Shook, 1996).
Pemeriksaan validasi cluster berasal juga dilakukan. Tanpa
validasi, seseorang tidak dapat yakin bahwa satu set berarti dan berguna cluster telah
diturunkan (Ketchen dan Shook, 1996), karena mungkin merupakan artefak statistik belaka
(Ketchen et al., 1993). Pertama, untuk menghadapi memvalidasi cluster diturunkan, kami mengembangkan
deskripsi dan label untuk masing-masing kelompok (ditunjukkan dalam bagian berikutnya). Langkah ini
menandakan sintesa temuan kuantitatif menjadi kualitatif gestalts (Slater dan
Olson, 2001). Kedua, untuk menilai validitas eksternal (Ketchen dan Shook, 1996),
kami memeriksa apakah themembers setiap karakteristik klaster pameran yang sesuai
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: