10.3.3.1 Heat–Moisture TreatmentIf the water content is lower than tha terjemahan - 10.3.3.1 Heat–Moisture TreatmentIf the water content is lower than tha Bahasa Indonesia Bagaimana mengatakan

10.3.3.1 Heat–Moisture TreatmentIf

10.3.3.1 Heat–Moisture Treatment
If the water content is lower than that required for gelatinization but the
temperature is within what is necessary for gelatinization, or higher, the starch
is exposed to what has been described as a heat–moisture treatment [119–122].
their properties change. Some examples of the influence of heat–moisture
For the starches in Table 10.4, both To
and Tc
have moved to higher
temperatures after the treatment. For potato and wheat starches exposed to
heat–moisture treatment (16 hr at 100°C, 27% water), a DSC study showed
that not only was the gelatinization temperature range broadened and moved
to higher temperatures but the biphasic endotherm, normally observed at
intermediate water contents, was also observed for the treated samples in
excess water [123]. The biphasic endotherm was more evident when the
moisture content was high during the treatment (i.e., 27%). The structural
changes seemed to be greater in potato starch than wheat starch. This is also
evident from the fact that the x-ray pattern is changed (from B-pattern to Apattern) [123]. For cassava/tapioca, a change from the C-pattern to the Apattern has been observed due to heat–moisture treatment [120]. The
heat–moisture treatment thus causes a change in the type of crystallinity, from
the less stable polymorphs (B and C) to the most stable one (A). It has been
observed that a transition from the B-polymorph to the A-polymorph might
also occur in response to microwave radiation [123a].
Other properties, such as swelling power and solubility, also change. A
decrease in these properties has been observed for several starches, including
wheat and potato starches [122,124]. The effect was greater for potato starch,
meaning that this starch became more similar to wheat starch. The baking
performance of the heat-treated potato starch improved somewhat but was still
inferior compared with wheat starch [119]. For the latter starch, the baking
performance deteriorated with heat–moisture treatment.
In the examples given above, heat–moisture treatments have been applied
to starches on purpose; however, such treatment might be expected to occur
changes may be neither known nor desired. One such process that might
influence starch properties is the drying of wheat kernels, which might result
in increased Tmvalues measured by DSC [125] and increased relative crystallinity of the starch [126]. The x-ray pattern, in accordance with the discussion
above, is the A-pattern, independent of the drying temperature; however, a
new d-spacing appears at 4.4 Å that has been attributed to the V-pattern. It
has been suggested that the drying procedure causes the formation of an
increased number of amylose–lipid complexes or more crystalline complexes.
Also, the growing conditions in the field might influence starch gelatinization
temperatures [125a].
© 2006 by Taylor & Francis Group, LLC
If these samples are then gelatinized (i.e., moved to the right in Figure 10.2),
treatment on physicochemical properties are given in Table 10.4[87,199–122]
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
10.3.3.1 pengolahan panas-airJika kandungan air lebih rendah dari yang diperlukan untuk gelatinization tetapisuhu berada di dalam apa diperlukan untuk gelatinization, atau lebih tinggi, Patiterkena yang digambarkan sebagai pengobatan panas-kelembaban [119-122].mengubah properti mereka. Beberapa contoh dari pengaruh panas-kelembabanUntuk Pati di 10.4 Meja, baik untukdan Tctelah pindah ke tinggisuhu setelah perawatan. Untuk Pati kentang dan gandum yang terkenaperlakuan panas-kelembaban (16 jam pada 100° C, 27% air), sebuah penelitian DSC menunjukkantidak hanya itu gelatinization temperatur diperluas dan pindahuntuk suhu tinggi tetapi biphasic endotherm, biasanya diamati padaperantara isi air, juga diamati untuk sampel diperlakukan dikelebihan air [123]. Biphasic endotherm adalah lebih jelas ketikakadar adalah tinggi selama perawatan (yaitu 27%). Strukturalperubahan tampaknya lebih besar dalam Kentang Pati dari gandum Pati. Hal ini jugaterbukti dari kenyataan bahwa pola x-ray berubah (dari B-pola untuk Apattern) [123]. Untuk singkong/tapioka, perubahan dari C-pola Apattern telah diamati karena perlakuan panas-kelembaban [120]. Thepengolahan panas-air sehingga menyebabkan perubahan dalam jenis bagian kristalinitas, darikurang stabil polimorf (B dan C) untuk yang paling stabil satu (A). Sudahmengamati bahwa transisi dari B-polimorf A-polimorf mungkinjuga terjadi dalam menanggapi radiasi microwave [123a].Properti lainnya, seperti pembengkakan kekuasaan dan kelarutan, juga mengubah. Apenurunan properti ini telah diamati untuk beberapa Pati, termasukgandum dan kentang Pati [122,124]. Efeknya adalah lebih besar untuk Pati kentang,berarti bahwa Pati ini menjadi lebih mirip dengan tepung gandum. Kuekinerja heat-treated Kentang Pati meningkat sedikit tapi masihlebih rendah dibandingkan dengan tepung gandum [119]. Untuk kedua Pati, dipanggangkinerja memburuk dengan perlakuan panas-kelembaban.Dalam contoh-contoh yang diberikan di atas, perawatan panas-kelembaban telah diterapkanuntuk Pati pada tujuan; Namun, pengobatan seperti mungkin diharapkan terjadiperubahan mungkin menjadi tidak dikenal atau diinginkan. Satu proses yang mungkinpengaruh Pati properties adalah pengeringan dari kernel gandum, yang mungkin mengakibatkandalam meningkatkan Tmvalues diukur oleh DSC [125] dan peningkatan relatif bagian kristalinitas Pati [126]. Pola x-ray, sesuai dengan diskusidi atas, adalah A-pola, independen dari pengeringan suhu; Namun,d-spacing baru muncul di 4.4 Å yang telah dikaitkan dengan V-pola. Itutelah diusulkan bahwa prosedur pengeringan menyebabkan pembentukanpeningkatan jumlah amilosa – lipid kompleks atau lebih kompleks kristal.Juga, kondisi yang berkembang di bidang dapat mempengaruhi Pati gelatinizationsuhu [125a].© 2006 oleh Taylor & Francis Group, LLCJika sampel ini kemudian gelatinized (yaitu, pindah kanan di angka 10.2),pengobatan pada properti secara fisikokimia diberikan dalam tabel 10.4 [87,199-122]
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
10.3.3.1 Heat-Moisture Treatment
Jika kadar air lebih rendah dari yang dibutuhkan untuk gelatinisasi tetapi
suhu adalah dalam apa yang diperlukan untuk gelatinisasi, atau lebih tinggi, pati
terkena apa yang telah digambarkan sebagai perlakuan panas-kelembaban [119- 122].
sifat mereka berubah. Beberapa contoh pengaruh panas-kelembaban
Untuk pati pada Tabel 10.4, baik To
dan Tc
telah pindah ke yang lebih tinggi
suhu setelah perawatan. Untuk kentang dan gandum pati terkena
panas-kelembaban pengobatan (16 jam pada 100 ° C, 27% ​​air), sebuah studi DSC menunjukkan
bahwa tidak hanya kisaran suhu gelatinisasi diperluas dan pindah
ke suhu yang lebih tinggi tetapi endoterm biphasic, biasanya diamati pada
kadar air menengah, juga diamati untuk sampel dirawat di
kelebihan air [123]. The endoterm biphasic lebih jelas ketika
kadar air tinggi selama perawatan (yaitu, 27%). Struktural
perubahan tampaknya lebih besar dalam tepung kentang dari tepung gandum. Ini juga
terlihat dari fakta bahwa pola x-ray berubah (dari B-pola Apattern) [123]. Untuk singkong / tapioka, perubahan dari C-pola ke Apattern telah diamati karena perlakuan panas-kelembaban [120]. The
perlakuan panas-kelembaban sehingga menyebabkan perubahan dalam jenis kristalinitas, dari
polimorf kurang stabil (B dan C) dengan yang paling stabil (A). Telah
diamati bahwa transisi dari B-polimorf ke A-polimorf mungkin
juga terjadi sebagai respon terhadap radiasi gelombang mikro [123a].
Sifat lain, seperti listrik dan kelarutan bengkak, juga berubah. Sebuah
penurunan sifat ini telah diamati selama beberapa pati, termasuk
gandum dan kentang pati [122124]. Efeknya lebih besar untuk tepung kentang,
yang berarti bahwa pati ini menjadi lebih mirip dengan tepung gandum. Baking
kinerja tepung kentang dipanaskan agak membaik tapi masih
kalah dibandingkan dengan pati gandum [119]. Untuk pati terakhir, baking
kinerja memburuk dengan perlakuan panas-kelembaban.
Dalam contoh yang diberikan di atas, perlakuan panas-kelembaban telah diterapkan
untuk pati pada tujuan; Namun, pengobatan tersebut mungkin diharapkan terjadi
perubahan mungkin tidak diketahui atau diinginkan. Salah satu proses tersebut yang mungkin
mempengaruhi sifat pati adalah pengeringan biji gandum, yang mungkin mengakibatkan
peningkatan Tmvalues ​​diukur dengan DSC [125] dan peningkatan kristalinitas relatif dari pati [126]. Pola x-ray, sesuai dengan pembahasan
di atas, adalah A-pola, independen dari suhu pengeringan; Namun, sebuah
d-spacing baru akan muncul di 4,4 Å yang telah dikaitkan dengan V-pola. Ini
telah mengemukakan bahwa prosedur pengeringan menyebabkan pembentukan
peningkatan jumlah kompleks amilosa-lipid atau kompleks kristal lebih.
Juga, kondisi pertumbuhan di lapangan dapat mempengaruhi gelatinisasi pati
suhu [125A].
© 2006 oleh Taylor & Francis Group, LLC
Jika sampel ini kemudian gelatinized (yaitu, pindah ke kanan pada Gambar 10.2),
pengobatan pada sifat fisikokimia diberikan dalam Tabel 10.4 [87,199-122]
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: