trypsin has features in common with that of chymotrypsin, the two mech terjemahan - trypsin has features in common with that of chymotrypsin, the two mech Bahasa Indonesia Bagaimana mengatakan

trypsin has features in common with

trypsin has features in common with that of chymotrypsin, the two mechanisms are considerably different [15]. Just as the activation processes of chymotrypsin and trypsin differ, the resultant mutually stabilizing interactions between the four segments in the two enzymes are also different. It follows from this that conformational plasticities of the activation domains of chymotrypsin and trypsin, as opposed to the static structures, should also be
different[17]. In this regard it is worth mentioning that the elimination of the disulfide bond Cys191-Cys220 from trypsin and chymotrypsin (constituent of the activation domains and the substrate-binding pockets of both enzymes) has different effects on their substrate specificities [77]. Preparation The purification from natural sources usually consists of
two major steps. It is the proenzyme which is prepared first by acidic extraction, ammonium sulfate precipitation and crystallization [5], or by acetone precipitation and ion-exchange chromatography[78]. Then, after the activation of the proenzyme, the different forms of chymotrypsin can be purified by ion-exchange [78] or affinity chromatography [66,79]. For the preparation of cloned chymotrypsin, the expression, purification and activation of chymotrypsinogen is also the most convenient route. Rat chymotrypsinogen expressed in a yeast system is secreted into the culture medium on a scale of milligrams per liter[66,79].
Biological Aspects The proteolytic enzymes of the digestive tract, including
chymotrypsin, trypsin (see Chapter 575) and elastase (see Chapter 584), are produced in inactive forms by the acinar cells of the pancreas, and they are carried as such by
the pancreatic juice into the duodenum where they are activated. The initial step of a complicated activation process is the activation of trypsinogen by enteropeptidase (Chapter 586). All the proenzymes in the digestive tract, chymotrypsinogen, proelastase and procarboxypeptidase A, are then activated by trypsin. Like the activation of these proteases, their breakdown and inactivation are also regulated by limited proteolysis. In the case of chymotrypsin(ogen) at least two kinds of proteolytic activities are involved in the activation/inactivation of the enzyme: one from trypsin and the other from the accumulating
chymotrypsin (also seeName and Historyabove). Under physiological conditions there may be sufficient trypsin to activate chymotrypsinogen rapidly enough to bypass the
autolysis of chymotrypsin and the breakdown of chymotrypsinogen by chymotrypsin. As discussed earlier (see Name and Historyabove), ‘fast’ activation of chymotrypsinogen [11], the process we expect in the duodenum, leads to the formation of γ-type chymotrypsin. Autolysis of chymotrypsin and its possible degradation by other proteases represents one of the physiologic mechanisms
for the inactivation of chymotrypsin in the small intestine. The other mechanism to regulate the activity of serine proteases is their inhibition by pancreatic protease inhibitors and serpins. It was recently suggested from our laboratory [80,81] and another laboratory [82] that serpins,
when covalently bound to serine proteases, convert them into an inactive, loose structure that serves as a ‘conformational trap’ of the enzyme, preventing catalytic deacylation. It is also suggested that this trap mechanism could be general for inhibitory serpins and that it may facilitate the degradation of the target proteases in vivo. Chymotrypsin B has also been detected in rat liver lysosomes,where it can cleave Bid and induce the mitochondrial apoptotic pathway; translocation of chymotrypsin B to the lysosome can be triggered by apoptotic
stimuli such as tumor necrosis factor αor permeabilization of lysosomal membranes induced by H2O2 or palmitate [83,84]. Distinguishing Features Pancreatic serine proteases are expressed as proenzymes with N-terminal propeptides of different lengths. Thesepropeptides, unlike those of subtilisin andα-lytic protease, which are inhibitory for the correctly folded enzymes[85],
preventcorrect folding of the substrate-binding pocket and the oxyanion hole of the pancreatic proteases (see Structural Chemistryabove). After the proenzymes reach the duodenum, where their activity is required, the propeptides are clipped off by enteropeptidase (for trypsinogen)
or by trypsin (for chymotrypsinogen and proelastase). The chymotrypsin structure is different from that of trypsin in that its 15 amino acid propeptide remains linked to the enzyme through a disulfide bridge between Cys1 and Cys122. To explore the structural and functional significance of this disulfide bond, chymotrypsinogen mutants lacking the bridge, wild-type chymotrypsinogen, a chymotrypsin/trypsin propeptide chimera and wild-type trypsinogen were expressed in yeast and thoroughly characterized [19]. The conclusion of this study is that the disulfide
bridge Cys1-Cys122 of chymotrypsinogen rather than the propeptide sequence itself plays a crucial role in keeping the proenzyme stable against non-specific activation. The
disulfide-linked propeptide in the active enzyme, however, does not seem to affect the activity and specificity of chymotrypsin. A comparison of proenzyme stabilities showed that the trypsinogen propeptide is about 10 times more effective than the chymotrypsinogen propeptide in
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
trypsin has features in common with that of chymotrypsin, the two mechanisms are considerably different [15]. Just as the activation processes of chymotrypsin and trypsin differ, the resultant mutually stabilizing interactions between the four segments in the two enzymes are also different. It follows from this that conformational plasticities of the activation domains of chymotrypsin and trypsin, as opposed to the static structures, should also bedifferent[17]. In this regard it is worth mentioning that the elimination of the disulfide bond Cys191-Cys220 from trypsin and chymotrypsin (constituent of the activation domains and the substrate-binding pockets of both enzymes) has different effects on their substrate specificities [77]. Preparation The purification from natural sources usually consists oftwo major steps. It is the proenzyme which is prepared first by acidic extraction, ammonium sulfate precipitation and crystallization [5], or by acetone precipitation and ion-exchange chromatography[78]. Then, after the activation of the proenzyme, the different forms of chymotrypsin can be purified by ion-exchange [78] or affinity chromatography [66,79]. For the preparation of cloned chymotrypsin, the expression, purification and activation of chymotrypsinogen is also the most convenient route. Rat chymotrypsinogen expressed in a yeast system is secreted into the culture medium on a scale of milligrams per liter[66,79].Biological Aspects The proteolytic enzymes of the digestive tract, includingchymotrypsin, trypsin (see Chapter 575) and elastase (see Chapter 584), are produced in inactive forms by the acinar cells of the pancreas, and they are carried as such bythe pancreatic juice into the duodenum where they are activated. The initial step of a complicated activation process is the activation of trypsinogen by enteropeptidase (Chapter 586). All the proenzymes in the digestive tract, chymotrypsinogen, proelastase and procarboxypeptidase A, are then activated by trypsin. Like the activation of these proteases, their breakdown and inactivation are also regulated by limited proteolysis. In the case of chymotrypsin(ogen) at least two kinds of proteolytic activities are involved in the activation/inactivation of the enzyme: one from trypsin and the other from the accumulatingchymotrypsin (also seeName and Historyabove). Under physiological conditions there may be sufficient trypsin to activate chymotrypsinogen rapidly enough to bypass theautolysis of chymotrypsin and the breakdown of chymotrypsinogen by chymotrypsin. As discussed earlier (see Name and Historyabove), ‘fast’ activation of chymotrypsinogen [11], the process we expect in the duodenum, leads to the formation of γ-type chymotrypsin. Autolysis of chymotrypsin and its possible degradation by other proteases represents one of the physiologic mechanismsfor the inactivation of chymotrypsin in the small intestine. The other mechanism to regulate the activity of serine proteases is their inhibition by pancreatic protease inhibitors and serpins. It was recently suggested from our laboratory [80,81] and another laboratory [82] that serpins,when covalently bound to serine proteases, convert them into an inactive, loose structure that serves as a ‘conformational trap’ of the enzyme, preventing catalytic deacylation. It is also suggested that this trap mechanism could be general for inhibitory serpins and that it may facilitate the degradation of the target proteases in vivo. Chymotrypsin B has also been detected in rat liver lysosomes,where it can cleave Bid and induce the mitochondrial apoptotic pathway; translocation of chymotrypsin B to the lysosome can be triggered by apoptoticstimuli such as tumor necrosis factor αor permeabilization of lysosomal membranes induced by H2O2 or palmitate [83,84]. Distinguishing Features Pancreatic serine proteases are expressed as proenzymes with N-terminal propeptides of different lengths. Thesepropeptides, unlike those of subtilisin andα-lytic protease, which are inhibitory for the correctly folded enzymes[85],preventcorrect folding of the substrate-binding pocket and the oxyanion hole of the pancreatic proteases (see Structural Chemistryabove). After the proenzymes reach the duodenum, where their activity is required, the propeptides are clipped off by enteropeptidase (for trypsinogen)or by trypsin (for chymotrypsinogen and proelastase). The chymotrypsin structure is different from that of trypsin in that its 15 amino acid propeptide remains linked to the enzyme through a disulfide bridge between Cys1 and Cys122. To explore the structural and functional significance of this disulfide bond, chymotrypsinogen mutants lacking the bridge, wild-type chymotrypsinogen, a chymotrypsin/trypsin propeptide chimera and wild-type trypsinogen were expressed in yeast and thoroughly characterized [19]. The conclusion of this study is that the disulfidebridge Cys1-Cys122 of chymotrypsinogen rather than the propeptide sequence itself plays a crucial role in keeping the proenzyme stable against non-specific activation. Thedisulfide-linked propeptide in the active enzyme, however, does not seem to affect the activity and specificity of chymotrypsin. A comparison of proenzyme stabilities showed that the trypsinogen propeptide is about 10 times more effective than the chymotrypsinogen propeptide in
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
tripsin memiliki fitur yang sama dengan yang kimotripsin, dua mekanisme yang sangat berbeda [15]. Sama seperti proses aktivasi kimotripsin dan tripsin berbeda, resultan saling menstabilkan interaksi antara empat segmen dalam dua enzim juga berbeda. Memang benar bahwa plasticities konformasi dari domain aktivasi kimotripsin dan tripsin, yang bertentangan dengan struktur statis, juga harus
berbeda [17]. Dalam hal ini perlu menyebutkan bahwa penghapusan disulfida obligasi Cys191-Cys220 dari tripsin dan kimotripsin (konstituen dari domain aktivasi dan kantong substrat mengikat kedua enzim) memiliki efek yang berbeda pada kekhususan substrat mereka [77]. Persiapan pemurnian dari sumber alami biasanya terdiri dari
dua langkah utama. Ini adalah proenzim yang dipersiapkan terlebih dahulu dengan ekstraksi asam, amonium sulfat curah hujan dan kristalisasi [5], atau dengan aseton curah hujan dan kromatografi pertukaran ion [78]. Kemudian, setelah aktivasi proenzim itu, berbagai bentuk kimotripsin dapat dimurnikan dengan pertukaran ion [78] atau kromatografi afinitas [66,79]. Untuk persiapan kloning kimotripsin, ekspresi, pemurnian dan aktivasi chymotrypsinogen juga rute yang paling nyaman. Tikus chymotrypsinogen dinyatakan dalam sistem ragi disekresi ke dalam media kultur pada skala miligram per liter [66,79].
Aspek Biologi Enzim proteolitik pada saluran pencernaan, termasuk
kimotripsin, tripsin (lihat Bab 575) dan elastase (lihat Bab 584), diproduksi dalam bentuk tidak aktif oleh sel-sel asinar pankreas, dan mereka dibawa seperti itu oleh
jus pankreas ke duodenum di mana mereka diaktifkan. Langkah awal dari proses aktivasi rumit adalah aktivasi tripsinogen oleh Enteropeptidase (Bab 586). Semua proenzymes dalam saluran pencernaan, chymotrypsinogen, proelastase dan procarboxypeptidase A, kemudian diaktifkan oleh tripsin. Seperti aktivasi protease ini, kerusakan dan inaktivasi mereka juga diatur oleh proteolisis yang terbatas. Dalam kasus chymotrypsin (Ogen) setidaknya dua jenis kegiatan proteolitik yang terlibat dalam aktivasi / inaktivasi enzim: satu dari tripsin dan lainnya dari terakumulasi
kimotripsin (juga seeName dan Historyabove). Dalam kondisi fisiologis mungkin ada tripsin yang cukup untuk mengaktifkan chymotrypsinogen cukup cepat untuk memotong
autolisis dari kimotripsin dan pemecahan chymotrypsinogen oleh kimotripsin. Seperti dibahas sebelumnya (lihat Nama dan Historyabove), aktivasi 'cepat' dari chymotrypsinogen [11], proses yang kita harapkan dalam duodenum, menyebabkan pembentukan γ-jenis kimotripsin. Autolisis dari kimotripsin dan kemungkinan degradasi oleh protease lain merupakan salah satu mekanisme fisiologis
untuk inaktivasi kimotripsin dalam usus kecil. Mekanisme lain untuk mengatur aktivitas protease serin adalah penghambatan mereka dengan inhibitor protease pankreas dan serpin. Baru-baru ini diusulkan dari laboratorium kami [80,81] dan laboratorium lain [82] bahwa serpin,
ketika kovalen terikat protease serin, mengubahnya menjadi sebuah aktif, struktur longgar yang berfungsi sebagai 'perangkap konformasi' enzim, mencegah katalitik deacylation. Hal ini juga menyarankan bahwa mekanisme perangkap ini bisa menjadi umum untuk serpin penghambatan dan bahwa hal itu dapat memfasilitasi degradasi protease target dalam vivo. Kimotripsin B juga telah terdeteksi di lisosom hati tikus, di mana ia dapat membelah Bid dan menginduksi apoptosis jalur mitokondria; translokasi kimotripsin B ke lisosom dapat dipicu oleh apoptosis
rangsangan seperti tumor necrosis factor αor permeabilisasi membran lisosom yang disebabkan oleh H2O2 atau palmitat [83,84]. Fitur yang membedakan protease serin pankreas dinyatakan sebagai proenzymes dengan propeptides N-terminal dengan panjang yang berbeda. Thesepropeptides, tidak seperti orang-orang dari Subtilisin andα-litik protease, yang menghambat enzim untuk dilipat dengan benar [85],
lipat preventcorrect dari saku substrat mengikat dan lubang oxyanion dari protease pankreas (lihat Struktural Chemistryabove). Setelah proenzymes mencapai duodenum, di mana aktivitas mereka diperlukan, propeptides yang terpotong oleh Enteropeptidase (untuk tripsinogen)
atau dengan tripsin (untuk chymotrypsinogen dan proelastase). Struktur kimotripsin adalah berbeda dari tripsin dalam nya 15 amino acid propeptide tetap terkait dengan enzim melalui jembatan disulfida antara Cys1 dan Cys122. Untuk mengeksplorasi makna struktural dan fungsional ikatan disulfida ini, mutan chymotrypsinogen kurang jembatan, tipe liar chymotrypsinogen, sebuah kimotripsin / tripsin propeptide chimera dan tipe liar tripsinogen diekspresikan dalam ragi dan benar-benar ditandai [19]. Kesimpulan dari penelitian ini adalah bahwa disulfide
jembatan Cys1-Cys122 dari chymotrypsinogen daripada urutan propeptide sendiri memainkan peran penting dalam menjaga proenzim yang stabil terhadap aktivasi non-spesifik. The
disulfida-linked propeptide dalam enzim aktif, bagaimanapun, tampaknya tidak mempengaruhi aktivitas dan spesifisitas kimotripsin. Perbandingan stabilitas proenzim menunjukkan bahwa propeptide tripsinogen adalah sekitar 10 kali lebih efektif dibandingkan dengan propeptide chymotrypsinogen di
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: