between two asymptotes-the natural distribution given by inviscidtheor terjemahan - between two asymptotes-the natural distribution given by inviscidtheor Bahasa Indonesia Bagaimana mengatakan

between two asymptotes-the natural

between two asymptotes-the natural distribution given by inviscid
theories at lower end, and an asymptote given by the characteristics
of a forced and discrete shedding process at the higher end. In
between, the nature is not universal, but transitional, where details
like the mode and frequency of flapping and the number of flaps
are influential.
4 Dynamic measurements of axial force and phase-matched
measurements of the vorticity-velocity vector maps in the axial
and cross-stream planes have confirmed the production of thrust
in a rigid body due to flapping foils attached to its tail. The origin
of thrust in the establishment of a jet producing vortex structure in
the wake is shown via direct measurements. These measurements
are a database for the validation of unsteady computational codes.
5 There is a misconception in the literature about Strouhal
numbers and efficiency of fish and two dimensional flapping hydrofoils.
While this may be true for natural shedding processes,
there is no data yet showing that fish attains a sharply peaked
highest efficiency in the range 0.25,St,0.35. Several species of
fish operate in this range when they swim at their highest speeds.
However data about efficiency and a sharp peaking is so far lacking.
6 Efficiency of axial force production reaches a peak below the
Strouhal number range of 0.2520.35. Strouhal number of tail
flapping does emerge as an important parameter governing the
production of net axial force and efficiency, although it is by no
means the only one. Flapping frequency and mode of flapping,
namely waving and clapping, are important as well in the forced
shedding mechanism. The efficiency of thrust production is
slightly higher in the waving mode of oscillation of the dual flapping
foils in the tail - a mode of motion that mimics the swaying
of the forebody of a fish. The importance of induced drag has
been traced to the flapping mode and the attendant interaction of
the flap-tip axial vortices.
7 The phase variation of a simulated and minute head swaying,
can modulate axial thrust produced by the tail motion, within a
narrow range of 65 percent. This precision indicates that the
phase relationship of vortex shedding from various discrete vorticity
generating surfaces is an effective tool of maneuvering in a
fish.
8 The general conclusion is that, the mechanism of discrete
deterministic and phased vortex shedding produces large unsteady
force vectors, which makes it inherently amenable to active control
and suitable for precision maneuvering.
Acknowledgment
This research was funded by the Office of Naval Research and
the Naval Undersea Warfare Center Independent Research Program.
This support is gratefully acknowledged. The encouragement
of and discussions with Mr. James Fein, Dr. Teresa Mc-
Mullen, Professors Frank Fish and M. Triantafyllou are
acknowledged. The authors would also like to acknowledge the
assistance of D. Thivierge, J. Dick, M. Zeiger, C. Straney, M.
Savoie, and B. Doyle. The first part of this work was presented at
the AGARD Workshop on ‘‘High Speed Body Motion in Water,’’
held at Kiev, Ukraine, Sept. 1–3, 1997, and the second part was
presented at the ‘‘International Symposium on Seawater Drag Reduction,’’
held at Newport, RI, July 22–24, 1998.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
antara dua asymptotes-the distribusi alami yang diberikan oleh inviscidteori di ujung bawah, dan asymptote yang diberikan oleh karakteristikpaksa dan diskrit penumpahan proses pada akhir yang lebih tinggi. Dalamantara, sifat ini tidak universal, tetapi transisi, mana rincianseperti mode dan frekuensi mengepak dan jumlah lipatanyang berpengaruh.Pengukuran dinamis 4 aksial memaksa dan dicocokkan fasepengukuran peta vektor vorticity-kecepatan di aksialdan arus lintas pesawat telah mengkonfirmasi produksi dorongdalam tubuh yang kaku akibat mengepak foil melekat pada ekornya. Asaldorong dalam pembentukan sebuah jet yang memproduksi struktur vortexbangun ditampilkan melalui pengukuran langsung. Pengukuran iniadalah database untuk validasi kode komputasi goyah.5 ada kesalahpahaman dalam literatur tentang Strouhalangka dan efisiensi ikan dan hydrofoil mengepak dua dimensi.Meskipun hal ini mungkin benar untuk proses penumpahan alam,ada tidak ada data yang belum menunjukkan bahwa ikan mencapai tajam Hōkaieffisiensi tertinggi dalam kisaran 0,25, St, 0,35. Beberapa spesiesikan beroperasi dalam kisaran ini ketika mereka berenang di kecepatan tertinggi mereka.Namun data tentang efisiensi dan memuncak tajam sejauh kurang.6 efisiensi produksi kekuatan aksial mencapai puncaknya di bawah iniStrouhal berbagai nomor 0.2520.35. Strouhal jumlah ekormengepak muncul sebagai parameter penting yang mengaturproduksi bersih kekuatan aksial dan efisiensi, meskipun tidakberarti satu-satunya. Mengepak frekuensi dan modus mengepak,yaitu melambaikan tangan dan bertepuk tangan, penting juga dalam paksamekanisme penumpahan. Efisiensi produksi dorongsedikit lebih tinggi dalam modus melambai osilasi dari senewen gandafoil di ekor - modus gerak yang meniru bergoyangdari forebody ikan. Pentingnya diinduksi tarik telahtelah dilacak untuk modus mengepak dan interaksi penjawabpusaran aksial flap-tip.7 tahap variasi simulasi dan menit kepala bergoyang,dapat memodulasi dorong aksial yang dihasilkan oleh gerakan ekor, dalamkisaran sempit 65 persen. Presisi ini menunjukkan bahwafase hubungan vortex penumpahan dari berbagai diskrit vorticitymenghasilkan permukaan adalah alat yang efektif manuver diikan.8 secara umum kesimpulan adalah bahwa, mekanisme diskritgoyah vortex deterministik dan bertahap penumpahan menghasilkan besarmemaksa vektor, yang membuatnya inheren setuju untuk aktif kontroldan cocok untuk manuver presisi.PengakuanPenelitian ini didanai oleh Office of Naval Research danProgram penelitian independen Naval Undersea Warfare Center.Dukungan ini syukur diakui. Dorongandari dan diskusi dengan Tn. James Fein, Dr Teresa Mc -Mullen, Profesor Frank ikan dan M. Triantafylloudiakui. Para penulis juga ingin mengakuiBantuan D. Thivierge, J. Dick, M. Zeiger, C. Straney, M.Savoie, dan B. Doyle. Bagian pertama dari pekerjaan ini dipresentasikan padaWorkshop AGARD '' kecepatan tinggi gerak tubuh dalam air ''diadakan di Kiev, Ukraina, 1-3 September 1997, dan bagian kedua adalahdisajikan di '' internasional Simposium di air laut Drag pengurangan ''diadakan di Newport, RI, 22-24 Juli 1998.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
between two asymptotes-the natural distribution given by inviscid
theories at lower end, and an asymptote given by the characteristics
of a forced and discrete shedding process at the higher end. In
between, the nature is not universal, but transitional, where details
like the mode and frequency of flapping and the number of flaps
are influential.
4 Dynamic measurements of axial force and phase-matched
measurements of the vorticity-velocity vector maps in the axial
and cross-stream planes have confirmed the production of thrust
in a rigid body due to flapping foils attached to its tail. The origin
of thrust in the establishment of a jet producing vortex structure in
the wake is shown via direct measurements. These measurements
are a database for the validation of unsteady computational codes.
5 There is a misconception in the literature about Strouhal
numbers and efficiency of fish and two dimensional flapping hydrofoils.
While this may be true for natural shedding processes,
there is no data yet showing that fish attains a sharply peaked
highest efficiency in the range 0.25,St,0.35. Several species of
fish operate in this range when they swim at their highest speeds.
However data about efficiency and a sharp peaking is so far lacking.
6 Efficiency of axial force production reaches a peak below the
Strouhal number range of 0.2520.35. Strouhal number of tail
flapping does emerge as an important parameter governing the
production of net axial force and efficiency, although it is by no
means the only one. Flapping frequency and mode of flapping,
namely waving and clapping, are important as well in the forced
shedding mechanism. The efficiency of thrust production is
slightly higher in the waving mode of oscillation of the dual flapping
foils in the tail - a mode of motion that mimics the swaying
of the forebody of a fish. The importance of induced drag has
been traced to the flapping mode and the attendant interaction of
the flap-tip axial vortices.
7 The phase variation of a simulated and minute head swaying,
can modulate axial thrust produced by the tail motion, within a
narrow range of 65 percent. This precision indicates that the
phase relationship of vortex shedding from various discrete vorticity
generating surfaces is an effective tool of maneuvering in a
fish.
8 The general conclusion is that, the mechanism of discrete
deterministic and phased vortex shedding produces large unsteady
force vectors, which makes it inherently amenable to active control
and suitable for precision maneuvering.
Acknowledgment
This research was funded by the Office of Naval Research and
the Naval Undersea Warfare Center Independent Research Program.
This support is gratefully acknowledged. The encouragement
of and discussions with Mr. James Fein, Dr. Teresa Mc-
Mullen, Professors Frank Fish and M. Triantafyllou are
acknowledged. The authors would also like to acknowledge the
assistance of D. Thivierge, J. Dick, M. Zeiger, C. Straney, M.
Savoie, and B. Doyle. The first part of this work was presented at
the AGARD Workshop on ‘‘High Speed Body Motion in Water,’’
held at Kiev, Ukraine, Sept. 1–3, 1997, and the second part was
presented at the ‘‘International Symposium on Seawater Drag Reduction,’’
held at Newport, RI, July 22–24, 1998.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: