The SOEC basically can be thought as a SOFC, working in reverse mode [ terjemahan - The SOEC basically can be thought as a SOFC, working in reverse mode [ Bahasa Indonesia Bagaimana mengatakan

The SOEC basically can be thought a

The SOEC basically can be thought as a SOFC, working in reverse mode [5]. Therefore, many materials currently studied as potential candidates for SOFC cathode can also be used as anodes in the SOEC.

While the solid oxide cell are efficient systems for energy conversion and production of [H.sub.2], the oxygen separation membranes are oxides ceramics with selectivity for the oxygen diffusion allowing the control of oxygen partial pressure in reactivity chambers for selective oxidation of hydrocarbons [3]. Particularly, mixed conductors with high oxide-ion conductivity can be used as oxygen separation membranes without the use of electrodes and external circuit required for a traditional ceramic oxygen pump.

Materials selection for these high temperature electrochemical devices involves an iterative design process that eventually becomes specific to the technical requirements and economic considerations. By one hand, in SOCs the critical parameters to the efficiency and operation are the voltages loss associated to ohmic drop in electrolyte and overpotentials on electrodes. By other hand, in oxygen separation membranes the critical issue is the stability of the ceramic membranes in both oxidant and reducing atmospheres. Besides, long term stability is required for both electrochemical devices due to the high working temperature. Therefore, thermodynamic and structural stability, along with chemical compatibility and zero thermal stress should be assured for the materials.

Most of the mixed conductors to be used as potential candidates for oxygen electrodes of intermediate temperature SOCs and oxygen separation membranes are transition metal oxides with perovskite or perovskite-related crystal structures exhibiting oxygen non-stoichiometry. The electronic conductivity of mixed conductors is mainly related to the mixed valence of the transition metals whereas the ionic conductivity is due to the presence of mobile oxygen vacancies at high temperatures.

It seems evident that the electrode reaction in oxygen electrodes and the oxygen transport in ceramic membranes should be related to the defect structure of the transition metal oxides.

The thermal analysis involves powerful techniques allowing the evaluation of the defect structure [10-14] and structural transformations [15, 16] of non-stoichiometric oxides used in combination with data obtained from high temperature XRD. Also it is possible to study, trough thermal analysis, the thermodynamic properties, and the chemical stability of diverse systems [17, 18].
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
The SOEC basically can be thought as a SOFC, working in reverse mode [5]. Therefore, many materials currently studied as potential candidates for SOFC cathode can also be used as anodes in the SOEC.While the solid oxide cell are efficient systems for energy conversion and production of [H.sub.2], the oxygen separation membranes are oxides ceramics with selectivity for the oxygen diffusion allowing the control of oxygen partial pressure in reactivity chambers for selective oxidation of hydrocarbons [3]. Particularly, mixed conductors with high oxide-ion conductivity can be used as oxygen separation membranes without the use of electrodes and external circuit required for a traditional ceramic oxygen pump.Materials selection for these high temperature electrochemical devices involves an iterative design process that eventually becomes specific to the technical requirements and economic considerations. By one hand, in SOCs the critical parameters to the efficiency and operation are the voltages loss associated to ohmic drop in electrolyte and overpotentials on electrodes. By other hand, in oxygen separation membranes the critical issue is the stability of the ceramic membranes in both oxidant and reducing atmospheres. Besides, long term stability is required for both electrochemical devices due to the high working temperature. Therefore, thermodynamic and structural stability, along with chemical compatibility and zero thermal stress should be assured for the materials.Sebagian besar konduktor campuran untuk digunakan sebagai calon untuk oksigen elektroda SOCs suhu menengah dan membran pemisahan oksigen logam transisi oksida dengan perovskite atau struktur kristal perovskite yang berhubungan dengan memamerkan oksigen bebas-stoikiometri. Konduktivitas elektronik campuran konduktor terutama terkait dengan valensi campuran logam-logam transisi sedangkan konduktivitas ionik karena adanya oksigen seluler Lowongan pada suhu tinggi.Tampaknya jelas bahwa reaksi elektroda dalam oksigen elektroda dan transportasi oksigen di keramik membran harus berhubungan dengan struktur cacat dari logam transisi oksida.Analisis termal melibatkan teknik yang kuat memungkinkan evaluasi struktur Cacat [10-14] dan transformasi struktural [15, 16] bebas-stoikiometri oksida digunakan dalam kombinasi dengan data yang Diperoleh dari suhu tinggi XRD. Juga dimungkinkan untuk studi, melalui analisis termal, sifat termodinamika, dan stabilitas kimia beragam sistem [17, 18].
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
The SOEC pada dasarnya dapat dianggap sebagai SOFC, bekerja dalam modus terbalik [5]. Oleh karena itu, banyak bahan saat dipelajari sebagai calon potensial untuk SOFC katoda juga dapat digunakan sebagai anoda dalam SOEC.

Sedangkan sel oksida padat adalah sistem yang efisien untuk konversi energi dan produksi [H2], membran pemisahan oksigen oksida keramik dengan selektivitas untuk difusi oksigen memungkinkan kontrol tekanan parsial oksigen di ruang reaktivitas untuk oksidasi selektif dari hidrokarbon [3]. Khususnya, campuran konduktor dengan tinggi konduktivitas oksida-ion dapat digunakan sebagai membran pemisahan oksigen tanpa menggunakan elektroda dan sirkuit eksternal diperlukan untuk pompa oksigen keramik tradisional.

Temukan Bahan untuk perangkat elektrokimia suhu tinggi ini melibatkan proses desain iteratif yang akhirnya menjadi spesifik persyaratan teknis dan pertimbangan ekonomi. Dengan satu tangan, di SOC parameter penting untuk efisiensi dan operasi adalah tegangan kerugian terkait dengan penurunan ohmic dalam elektrolit dan overpotentials pada elektroda. Oleh sisi lain, oksigen pemisahan membran isu penting adalah stabilitas membran keramik di kedua oksidan dan mengurangi atmosfer. Selain itu, stabilitas jangka panjang diperlukan untuk kedua perangkat elektrokimia karena suhu kerja tinggi. Oleh karena itu, termodinamika dan struktural stabilitas, bersama dengan kompatibilitas kimia dan nol stres termal harus terjamin untuk bahan.

Sebagian besar konduktor campuran untuk digunakan sebagai calon potensial untuk elektroda oksigen dari SOC suhu menengah dan membran pemisahan oksigen transisi oksida logam dengan perovskit atau struktur kristal terkait perovskit menunjukkan oksigen non-stoikiometri. Konduktivitas elektronik konduktor campuran terutama terkait dengan valensi campuran logam transisi sedangkan konduktivitas ionik adalah karena adanya kekosongan oksigen seluler pada suhu tinggi.

Tampaknya jelas bahwa reaksi elektroda dalam elektroda oksigen dan transportasi oksigen dalam keramik membran harus berkaitan dengan struktur cacat dari oksida logam transisi.

analisis termal melibatkan teknik yang kuat yang memungkinkan evaluasi struktur cacat [10-14] dan transformasi struktural [15, 16] oksida non-stoikiometri digunakan dalam kombinasi dengan data diperoleh dari XRD suhu tinggi. Juga dimungkinkan untuk belajar, analisis melalui termal, sifat termodinamika, dan stabilitas kimia dari beragam sistem [17, 18].
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: