Two qualifications should be stressed,however, concerning the bilayer  terjemahan - Two qualifications should be stressed,however, concerning the bilayer  Bahasa Indonesia Bagaimana mengatakan

Two qualifications should be stress

Two qualifications should be stressed,
however, concerning the bilayer form
of membrane lipids. (i) None of the
evidence so far obtained for the bilayer
form permits us to say whether the
bilayer is continuous or interrupted (1).
The calorimetrically observed phase
transitions, for example, occur over a
broad temperature interval, allowing the
possibility that the cooperative unit involved
in the phase transition is quite
small, consisting perhaps of only 100
lipid molecules on the average. (ii) None
of the experiments mentioned above is
sufficiently sensitive and quantitative to
prove whether 100 percent of the phospholipid
is in the bilayer form. It is
therefore not excluded that some significant
fraction of the phospholipid (perhaps
as much as 30 percent) is physically
in a different state from the rest
of the lipid.
Protein-lipid interactions in membranes.
Several kinds of experiments
indicate that protein-lipid interactions
play a direct role in a variety of
membrane functions. Many membranebound
enzymes and antigens require
lipids, often specific phospholipids, for
the expression of their activities [see
table 2 in (21)]. Furthermore, the
nature of the fatty acids incorporated
into phospholipids affects the function
of certain membrane-bound proteins in
bacterial membranes (22).
On the other hand, the calorimetric
data discussed above give no significant
indication that the association of proteins
with the phospholipids of intact
membranes affects the phase transitions
of the phospholipids themselves. Experiments
with phospholipase C and
membranes have shown that the enzymic
release of 70 percent of the
phosphorylated amines from intact
erythrocyte membranes profoundly
perturbs the physical state of the residual
fatty acid chains, but has no detectable
effect (as measured by circular
dichroism spectra) on the average conformation
of the membrane proteins
(2). Such results therefore suggest that
the phospholipids and proteins of
membranes do not interact strongly; in
fact, they appear to be largely independent.
This paradox, that different types of
experiments suggest strong protein-lipid
interactions on the one hand, and weak
or no interactions on the other, can be
resolved in a manner consistent with
all the data if it is proposed that, while
the largest portion of the phospholipid
is in bilayer form and not strongly
coupled to proteins in the membrane,
SCIENCE, VOL. 175
a small fraction of the lipid is more
tightly coupled to protein. With any
one membrane protein, the tightly
coupled lipid might be specific; that is,
the interaction might require that the
phospholipid contain specific fatty acid
chains or particular polar head groups.
There is at present, however, no satisfactory
direct evidence for such a distinctive
lipid fraction. This problem is
considered again in connection with a
discussion of the experiments of Wilson
and Fox (23).
Fluid Mosaic Model
Mosaic structure of the proteins and
lipids of membranes. The thermodynamic
considerations and experimental
results so far discussed fit in with the
idea of a mosaic structure for membranes
(1-3, 24) in which globular molecules
of the integral proteins (perhaps
in particular instances attached to oligosaccharides
to form glycoproteins,
or interacting strongly with specific lipids
to form lipoproteins) alternate with
sections of phospholipid bilayer in the
cross section of the membrane (Fig. 2).
The globular protein molecules are postulated
to be amphipathic (3, 4) as are
the phospholipids. That is, they are
structurallya symmetric,w ith one highly
polar end and one nonpolar end. The
highly polar region is one in which the
ionic amino acid residues and any covalently
bound saccharide residues are
clustered, and which is in contact with
the aqueous phase in the intact membrane;
the nonpolar region is devoid of
ionic and saccharide residues, contains
many of the nonpolar residues, and is
embedded in the hydrophobic interior
of the membrane. The amphipathic
structure adopted by a particular integral
protein (or lipoprotein) molecule,
and therefore the extent to which it is
embedded in the membrane, are under
thermodynamic control; that is, they
are determined by the amino acid sequence
and covalent structure of the
protein, and by its interactions with its
molecular environment, so that the free
energy of the system as a whole is at a
minimum. An integral protein molecule
with the appropriate size and structure,
or a suitable aggregate of integral proteins
(below) may transverse the entire
membrane (3); that is, they have regions
in contact with the aqueous solvent
on both sides of the membrane.
It is clear from these considerations
that different proteins, if they have the
appropriate amino acid sequence to
18 FEBRUARY 1972
adopt an amphipathic structure, can be
integral proteins of membranes; in this
manner, the heterogeneity of the proteins
of most functional membranes can
be rationalized.
The same considerations may also explain
why some proteins are membranebound
and others are freely soluble in
the cytoplasm. The difference may be
that either the amino acid sequence of
the particular protein allows it to adopt
an amphipathic structure or, on the
contrary, to adopt a structure in which
the distributiono f ionic groupsi s nearly
spherically symmetrical, in the lowest
free energy state of the system. If the
ionic distribution on the protein surface
were symmetrical, the protein
would be capable of interacting strongly
with water all over its exterior surface,
that is, it would be a monodisperse soluble
protein.
The mosaic structure can be readily
diversified in several ways. Although
the nature of this diversification is a
matter of speculation, it is important to
recognize that the mosaic structure need
not be restricted by the schematic representation
in Fig. 2. Protein-protein
interactions that are not explicitly considered
in Fig. 2 may be important in
determining the properties of the membrane.
Such interactions may result
either in the specific binding of a
peripheral protein to the exterior exposed
surface of a particular integral
protein or in the association of two or
more integral protein subunits to form
a specific aggregate within the membrane.
These features can be accommodated
in Fig. 2 without any changes
in the basic structure.
The phospholipids of the mosaic
structure are predominantly arranged as
an interrupted bilayer, with their ionic
and polar head groups in contact with
the aqueous phase. As has been discussed,
however, a small portion of the
lipid may be more intimately associated
with the integral proteins. This feature
is not explicitly indicated in Fig. 2. The
thickness of a mosaic membrane would
vary along the surface from that across
a phospholipid bilayer region to that
across a protein region, with an average
value that could be expected to correspond
reasonably well to experimentally
measured membrane thicknesses.
Matrix of the mosaic: lipid or protein?
In the cross section of the mosaic
structure represented in Fig. 2, it is not
indicated whether it is the protein or the
phospholipid that provides the matrix of
the mosaic. In other words, which component
is the mortar, which the bricks?
This question must be answered when
the third dimension of the mosaic structure
is specified. Trhese two types of
mosaic structure may be expected to
have very different structural and functional
properties, and the question is
therefore a critical one. It is our hy-
Fig. 3. The lipid-globulapr roteinm osaic model with a lipid matrix (the fluid mosaic
model); schematic three-dimensional and cross-sectional views. The solid bodies with
stippled surfaces represent the globular integral proteins, which at long range are
randomly distributed in the plane of the membrane. At short range, some may form
specific aggregates, as shown. In cross section and in other details, the legend of
Fig. 2 applies.
723
pothesis that functional cell membranes
have a long-range mosaic structure with
the lipids constituting the matrix, as is
shown in Fig. 3. Supporting evidence is
discussed later. At this point, let us
consider some of the consequences of
this hypothesis.
1) There should generally be no longrange
order in a mosaic membrane with
a lipid matrix. By long range, we mean
over distances of the order of a few
tenths of a micrometer and greater.
Suppose we have a membrane preparation
containing many different protein
species, and suppose further that 10,000
molecules of protein A are present in
the membrane of a single cell or organelle.
How is protein A distributed
over the membrane surface? If the
membrane proteins formed the matrix
of the mosaic, defined by specific contacts
between the molecules of different
integral proteins, protein A might be
distributed in a highly ordered, twodimensional
array on the surface. On
the other hand, if lipid formed the
matrix of the mosaic, there would be no
long-range interactions intrinsic to the
membrane influencing the distribution
of A molecules, and they should therefore
be distributed in an aperiodic random
arrangement on the membrane
surface.
The absence of long-range order
should not be taken to imply an absence
of short-range order in the membrane.
It is very likely that such shortrange
order does exist, as, for example,
among at least some components of the
electron transport chain in the mitochondrial
inner membrane. Such shortrange
order is probably mediated by
specific protein (and perhaps proteinlipid)
interactions leading to the formation
of stoichiometrically defined aggregates
within the membrane. However,
in a mosaic membrane with a
lipid matrix, the long-range distribution
of such aggregates would be expected
to be random over the entire
surface of the membrane.
The objection may immediately be
raised that long-range order clearly
exists in certain cases where differentiated
structures (for example, synapses)
are found within a membrane. We suggest,
in such special cases, either that
short-
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Two qualifications should be stressed,however, concerning the bilayer formof membrane lipids. (i) None of theevidence so far obtained for the bilayerform permits us to say whether thebilayer is continuous or interrupted (1).The calorimetrically observed phasetransitions, for example, occur over abroad temperature interval, allowing thepossibility that the cooperative unit involvedin the phase transition is quitesmall, consisting perhaps of only 100lipid molecules on the average. (ii) Noneof the experiments mentioned above issufficiently sensitive and quantitative toprove whether 100 percent of the phospholipidis in the bilayer form. It istherefore not excluded that some significantfraction of the phospholipid (perhapsas much as 30 percent) is physicallyin a different state from the restof the lipid.Protein-lipid interactions in membranes.Several kinds of experimentsindicate that protein-lipid interactionsplay a direct role in a variety ofmembrane functions. Many membraneboundenzymes and antigens requirelipids, often specific phospholipids, forthe expression of their activities [seetable 2 in (21)]. Furthermore, thenature of the fatty acids incorporatedinto phospholipids affects the functionof certain membrane-bound proteins inbacterial membranes (22).On the other hand, the calorimetricdata discussed above give no significantindication that the association of proteinswith the phospholipids of intactmembranes affects the phase transitions
of the phospholipids themselves. Experiments
with phospholipase C and
membranes have shown that the enzymic
release of 70 percent of the
phosphorylated amines from intact
erythrocyte membranes profoundly
perturbs the physical state of the residual
fatty acid chains, but has no detectable
effect (as measured by circular
dichroism spectra) on the average conformation
of the membrane proteins
(2). Such results therefore suggest that
the phospholipids and proteins of
membranes do not interact strongly; in
fact, they appear to be largely independent.
This paradox, that different types of
experiments suggest strong protein-lipid
interactions on the one hand, and weak
or no interactions on the other, can be
resolved in a manner consistent with
all the data if it is proposed that, while
the largest portion of the phospholipid
is in bilayer form and not strongly
coupled to proteins in the membrane,
SCIENCE, VOL. 175
a small fraction of the lipid is more
tightly coupled to protein. With any
one membrane protein, the tightly
coupled lipid might be specific; that is,
the interaction might require that the
phospholipid contain specific fatty acid
chains or particular polar head groups.
There is at present, however, no satisfactory
direct evidence for such a distinctive
lipid fraction. This problem is
considered again in connection with a
discussion of the experiments of Wilson
and Fox (23).
Fluid Mosaic Model
Mosaic structure of the proteins and
lipids of membranes. The thermodynamic
considerations and experimental
results so far discussed fit in with the
idea of a mosaic structure for membranes
(1-3, 24) in which globular molecules
of the integral proteins (perhaps
in particular instances attached to oligosaccharides
to form glycoproteins,
or interacting strongly with specific lipids
to form lipoproteins) alternate with
sections of phospholipid bilayer in the
cross section of the membrane (Fig. 2).
The globular protein molecules are postulated
to be amphipathic (3, 4) as are
the phospholipids. That is, they are
structurallya symmetric,w ith one highly
polar end and one nonpolar end. The
highly polar region is one in which the
ionic amino acid residues and any covalently
bound saccharide residues are
clustered, and which is in contact with
the aqueous phase in the intact membrane;
the nonpolar region is devoid of
ionic and saccharide residues, contains
many of the nonpolar residues, and is
embedded in the hydrophobic interior
of the membrane. The amphipathic
structure adopted by a particular integral
protein (or lipoprotein) molecule,
and therefore the extent to which it is
embedded in the membrane, are under
thermodynamic control; that is, they
are determined by the amino acid sequence
and covalent structure of the
protein, and by its interactions with its
molecular environment, so that the free
energy of the system as a whole is at a
minimum. An integral protein molecule
with the appropriate size and structure,
or a suitable aggregate of integral proteins
(below) may transverse the entire
membrane (3); that is, they have regions
in contact with the aqueous solvent
on both sides of the membrane.
It is clear from these considerations
that different proteins, if they have the
appropriate amino acid sequence to
18 FEBRUARY 1972
adopt an amphipathic structure, can be
integral proteins of membranes; in this
manner, the heterogeneity of the proteins
of most functional membranes can
be rationalized.
The same considerations may also explain
why some proteins are membranebound
and others are freely soluble in
the cytoplasm. The difference may be
that either the amino acid sequence of
the particular protein allows it to adopt
an amphipathic structure or, on the
contrary, to adopt a structure in which
the distributiono f ionic groupsi s nearly
spherically symmetrical, in the lowest
free energy state of the system. If the
ionic distribution on the protein surface
were symmetrical, the protein
would be capable of interacting strongly
with water all over its exterior surface,
that is, it would be a monodisperse soluble
protein.
The mosaic structure can be readily
diversified in several ways. Although
the nature of this diversification is a
matter of speculation, it is important to
recognize that the mosaic structure need
not be restricted by the schematic representation
in Fig. 2. Protein-protein
interactions that are not explicitly considered
in Fig. 2 may be important in
determining the properties of the membrane.
Such interactions may result
either in the specific binding of a
peripheral protein to the exterior exposed
surface of a particular integral
protein or in the association of two or
more integral protein subunits to form
a specific aggregate within the membrane.
These features can be accommodated
in Fig. 2 without any changes
in the basic structure.
The phospholipids of the mosaic
structure are predominantly arranged as
an interrupted bilayer, with their ionic
and polar head groups in contact with
the aqueous phase. As has been discussed,
however, a small portion of the
lipid may be more intimately associated
with the integral proteins. This feature
is not explicitly indicated in Fig. 2. The
thickness of a mosaic membrane would
vary along the surface from that across
a phospholipid bilayer region to that
across a protein region, with an average
value that could be expected to correspond
reasonably well to experimentally
measured membrane thicknesses.
Matrix of the mosaic: lipid or protein?
In the cross section of the mosaic
structure represented in Fig. 2, it is not
indicated whether it is the protein or the
phospholipid that provides the matrix of
the mosaic. In other words, which component
is the mortar, which the bricks?
This question must be answered when
the third dimension of the mosaic structure
is specified. Trhese two types of
mosaic structure may be expected to
have very different structural and functional
properties, and the question is
therefore a critical one. It is our hy-
Fig. 3. The lipid-globulapr roteinm osaic model with a lipid matrix (the fluid mosaic
model); schematic three-dimensional and cross-sectional views. The solid bodies with
stippled surfaces represent the globular integral proteins, which at long range are
randomly distributed in the plane of the membrane. At short range, some may form
specific aggregates, as shown. In cross section and in other details, the legend of
Fig. 2 applies.
723
pothesis that functional cell membranes
have a long-range mosaic structure with
the lipids constituting the matrix, as is
shown in Fig. 3. Supporting evidence is
discussed later. At this point, let us
consider some of the consequences of
this hypothesis.
1) There should generally be no longrange
order in a mosaic membrane with
a lipid matrix. By long range, we mean
over distances of the order of a few
tenths of a micrometer and greater.
Suppose we have a membrane preparation
containing many different protein
species, and suppose further that 10,000
molecules of protein A are present in
the membrane of a single cell or organelle.
How is protein A distributed
over the membrane surface? If the
membrane proteins formed the matrix
of the mosaic, defined by specific contacts
between the molecules of different
integral proteins, protein A might be
distributed in a highly ordered, twodimensional
array on the surface. On
the other hand, if lipid formed the
matrix of the mosaic, there would be no
long-range interactions intrinsic to the
membrane influencing the distribution
of A molecules, and they should therefore
be distributed in an aperiodic random
arrangement on the membrane
surface.
The absence of long-range order
should not be taken to imply an absence
of short-range order in the membrane.
It is very likely that such shortrange
order does exist, as, for example,
among at least some components of the
electron transport chain in the mitochondrial
inner membrane. Such shortrange
order is probably mediated by
specific protein (and perhaps proteinlipid)
interactions leading to the formation
of stoichiometrically defined aggregates
within the membrane. However,
in a mosaic membrane with a
lipid matrix, the long-range distribution
of such aggregates would be expected
to be random over the entire
surface of the membrane.
The objection may immediately be
raised that long-range order clearly
exists in certain cases where differentiated
structures (for example, synapses)
are found within a membrane. We suggest,
in such special cases, either that
short-
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Dua kualifikasi harus ditekankan,
bagaimanapun, mengenai bentuk bilayer
lipid membran. (i) Tidak satu pun dari
bukti sejauh diperoleh untuk bilayer
bentuk memungkinkan kita untuk mengatakan apakah
bilayer kontinu atau terputus (1).
The kalorimetrik diamati fase
transisi, misalnya, terjadi selama
selang temperatur yang luas, memungkinkan
kemungkinan bahwa unit koperasi yang terlibat
dalam fase transisi cukup
kecil, yang terdiri dari mungkin hanya 100
molekul lipid rata-rata. (ii) Tidak ada
eksperimen yang disebutkan di atas adalah
cukup sensitif dan kuantitatif untuk
membuktikan apakah 100 persen dari fosfolipid yang
dalam bentuk bilayer. Hal ini
karena itu tidak dikecualikan bahwa beberapa signifikan
fraksi fosfolipid (mungkin
sebanyak 30 persen) secara fisik
dalam keadaan berbeda dari sisa
dari lipid.
Interaksi Protein-lipid di membran.
Beberapa jenis eksperimen
menunjukkan bahwa protein-lipid interaksi
memainkan peran langsung dalam berbagai
fungsi membran. Banyak membranebound
enzim dan antigen membutuhkan
lipid, sering fosfolipid tertentu, untuk
ekspresi kegiatan mereka [lihat
tabel 2 di (21)]. Selain itu,
sifat asam lemak dimasukkan
ke dalam fosfolipid mempengaruhi fungsi
protein membran-terikat tertentu dalam
membran bakteri (22).
Di sisi lain, kalorimetrik
data yang dibahas di atas tidak memberikan signifikan
indikasi bahwa hubungan protein
dengan fosfolipid utuh
membran mempengaruhi transisi fase
dari fosfolipid sendiri. Percobaan
dengan fosfolipase C dan
membran telah menunjukkan bahwa enzymic
pelepasan 70 persen dari
amina terfosforilasi dari utuh
membran eritrosit mendalam
perturbs keadaan fisik dari sisa
rantai asam lemak, tetapi tidak memiliki terdeteksi
efek (yang diukur dengan melingkar
spektrum dichroism) di rata konformasi
dari protein membran
(2). Oleh karena itu hasil tersebut menunjukkan bahwa
fosfolipid dan protein dari
membran tidak berinteraksi kuat; di
kenyataannya, mereka tampaknya sebagian besar independen.
Paradoks ini, bahwa berbagai jenis
eksperimen menunjukkan protein-lipid yang kuat
interaksi di satu sisi, dan lemah
atau tidak ada interaksi di sisi lain, dapat
diselesaikan dengan cara yang konsisten dengan
semua data jika diusulkan bahwa, sementara
bagian terbesar dari fosfolipid yang
dalam bentuk bilayer dan tidak kuat
digabungkan dengan protein dalam membran,
ILMU, VOL. 175
sebagian kecil dari lipid yang lebih
erat digabungkan untuk protein. Dengan
satu protein membran, yang erat
lipid ditambah mungkin spesifik; yaitu,
interaksi mungkin memerlukan bahwa
fosfolipid mengandung asam lemak tertentu
rantai atau kelompok kepala polar tertentu.
Ada saat ini, bagaimanapun, tidak ada yang memuaskan
bukti langsung untuk sebuah khas
fraksi lipid. Masalah ini
dianggap lagi sehubungan dengan
diskusi tentang percobaan dari Wilson
dan Fox (23).
Mosaic Model Fluid
struktur Mosaic dari protein dan
lipid membran. The termodinamika
pertimbangan dan eksperimental
hasil sejauh dibahas cocok dengan
gagasan struktur mosaik untuk membran
(1-3, 24) di mana molekul globular
protein integral (mungkin
dalam kasus tertentu yang melekat pada oligosakarida
untuk membentuk glikoprotein,
atau berinteraksi kuat dengan lipid tertentu
untuk membentuk lipoprotein) alternatif dengan
bagian dari bilayer fosfolipid dalam
penampang membran (Gambar. 2).
Molekul-molekul protein globular yang didalilkan
menjadi amphipathic (3, 4) seperti
fosfolipid. Artinya, mereka
simetris structurallya, w engan satu yang sangat
akhir polar dan nonpolar salah satu ujung. The
wilayah yang sangat polar adalah salah satu di mana
residu asam amino ionik dan setiap kovalen
residu sakarida terikat yang
berkerumun, dan yang berhubungan dengan
fase berair dalam membran utuh;
wilayah nonpolar adalah tanpa
residu ionik dan sakarida, mengandung
banyak residu nonpolar, dan
tertanam dalam interior hidrofobik
membran. The amphipathic
struktur diadopsi oleh tertentu terpisahkan
protein (atau lipoprotein) molekul,
dan oleh karena itu sejauh mana itu
tertanam dalam membran, berada di bawah
kendali termodinamika; yaitu, mereka
ditentukan oleh urutan asam amino
dan struktur kovalen dari
protein, dan oleh interaksi dengan
orang-lingkungan molekul, sehingga bebas
energi dari sistem secara keseluruhan berada pada
minimum. Molekul protein yang tidak terpisahkan
dengan ukuran yang sesuai dan struktur,
atau agregat cocok protein terpisahkan
(bawah) mungkin melintang seluruh
membran (3); yaitu, mereka memiliki daerah
dalam kontak dengan pelarut air
di kedua sisi membran.
Hal ini jelas dari pertimbangan-pertimbangan ini
bahwa protein yang berbeda, jika mereka memiliki
urutan asam amino yang tepat untuk
18 Februari 1972
mengadopsi struktur amphipathic, dapat
protein terpisahkan membran; dalam hal ini
cara, heterogenitas protein
membran fungsional yang paling bisa
dirasionalisasi.
Pertimbangan yang sama mungkin juga menjelaskan
mengapa beberapa protein membranebound
dan lain-lain yang bebas larut dalam
sitoplasma. Perbedaannya mungkin
bahwa baik urutan asam amino dari
protein tertentu memungkinkan untuk mengadopsi
struktur amphipathic atau, pada
sebaliknya, untuk mengadopsi struktur di mana
para distributiono f ionik groupsi s hampir
berbentuk sebuah bola simetris, di terendah
keadaan energi bebas sistem. Jika
distribusi ion pada permukaan protein
yang simetris, protein
akan mampu berinteraksi kuat
dengan air seluruh permukaan eksterior,
yaitu, itu akan menjadi larut monodisperse
protein.
Struktur mosaik dapat segera
diversifikasi dalam beberapa cara. Meskipun
sifat diversifikasi ini adalah
soal spekulasi, adalah penting untuk
mengenali bahwa struktur mosaik perlu
tidak dibatasi oleh representasi skematis
pada Gambar. 2. Protein-protein
interaksi yang tidak secara eksplisit dianggap
dalam Gambar. 2 mungkin penting dalam
menentukan sifat membran.
Interaksi tersebut dapat mengakibatkan
baik dalam pengikatan spesifik dari
protein perifer untuk eksterior terkena
permukaan terpisahkan tertentu
protein atau asosiasi dua atau
lebih integral subunit protein untuk membentuk
tertentu agregat dalam membran.
Fitur-fitur ini dapat ditampung
pada Gambar. 2 tanpa perubahan
dalam struktur dasar.
The fosfolipid dari mosaik
struktur yang dominan diatur sebagai
sebuah bilayer terganggu, dengan ion mereka
kelompok kepala dan kutub kontak dengan
fase berair. Seperti telah dibahas,
namun, sebagian kecil dari
lipid mungkin lebih berkaitan erat
dengan protein integral. Fitur ini
tidak secara eksplisit ditunjukkan pada Gambar. 2.
ketebalan membran mosaik akan
bervariasi sepanjang permukaan dari yang di
daerah bilayer fosfolipid dengan yang
di daerah protein, dengan rata-rata
nilai yang bisa diharapkan sesuai
cukup baik untuk eksperimental
diukur ketebalan membran.
Matrix mosaik: lipid atau protein?
Pada penampang mosaik
struktur diwakili dalam Gambar. 2, tidak
menunjukkan apakah itu adalah protein atau
fosfolipid yang menyediakan matriks
mosaik. Dengan kata lain, yang komponen
adalah mortir, yang batu bata?
Pertanyaan ini harus dijawab ketika
dimensi ketiga dari struktur mosaik
ditentukan. Trhese dua jenis
struktur mosaik dapat diharapkan
memiliki struktural dan fungsional yang sangat berbeda
sifat, dan pertanyaannya adalah
karena itu salah satu kritis. Ini adalah hidrokarbon kami
Gambar. 3. lipid-globulapr The roteinm Model osaic dengan matriks lipid (mosaik fluida
model); skematik tiga dimensi dan cross-sectional pemandangan. Mayat solid dengan
permukaan dibintiki mewakili protein integral globular, yang pada jangka panjang yang
acak didistribusikan pada bidang membran. Pada jarak pendek, beberapa mungkin membentuk
agregat tertentu, seperti yang ditunjukkan. Dalam penampang dan rincian lainnya, legenda
Gambar. 2 berlaku.
723
hy- bahwa membran sel fungsional
memiliki struktur mosaik jarak jauh dengan
lipid yang merupakan matriks, seperti yang
ditunjukkan pada Gambar. 3. Bukti Pendukung
dibahas kemudian. Pada titik ini, mari kita
mempertimbangkan beberapa konsekuensi dari
hipotesis ini.
1) Ada umumnya harus ada longrange
urutan membran mosaik dengan
matriks lipid. Dengan jarak jauh, kita berarti
jarak dari urutan beberapa
persepuluh dari mikrometer dan lebih besar.
Misalkan kita memiliki persiapan membran
yang mengandung banyak protein yang berbeda
spesies, dan kira lebih lanjut bahwa 10.000
molekul protein A yang hadir dalam
membran tunggal sel atau organel.
Bagaimana protein A didistribusikan
di atas permukaan membran? Jika
protein membran membentuk matriks
dari mosaik, yang didefinisikan oleh kontak tertentu
antara molekul yang berbeda
protein integral, protein A mungkin
didistribusikan dalam yang sangat memerintahkan, dua dimensi
array pada permukaan. Di
sisi lain, jika lipid membentuk
matriks mosaik, tidak akan ada
jarak interaksi intrinsik ke
membran mempengaruhi distribusi
molekul A, dan mereka harus karena itu
didistribusikan di acak aperiodik
pengaturan pada membran
permukaan.
The tidak adanya order jarak jauh
tidak harus diambil untuk menyiratkan tidak adanya
ketertiban jarak pendek dalam membran.
Hal ini sangat mungkin bahwa shortrange seperti
rangka memang ada, seperti, misalnya,
antara setidaknya beberapa komponen dari
rantai transpor elektron di mitokondria
membran dalam. Shortrange seperti
rangka mungkin dimediasi oleh
protein spesifik (dan mungkin proteinlipid)
interaksi yang mengarah pada pembentukan
dari didefinisikan stoikiometri agregat
dalam membran. Namun,
dalam membran mosaik dengan
matriks lipid, distribusi jarak jauh
dari agregat tersebut akan diharapkan
untuk menjadi acak di seluruh
permukaan membran.
Keberatan mungkin segera
mengangkat bahwa perintah jarak jauh jelas
ada dalam kasus-kasus tertentu di mana dibedakan
struktur (misalnya, sinapsis)
yang ditemukan dalam membran. Kami menyarankan,
dalam kasus-kasus khusus seperti, baik yang
pendek
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: