transport system, where transfer of electrons is known to occur in a l terjemahan - transport system, where transfer of electrons is known to occur in a l Bahasa Indonesia Bagaimana mengatakan

transport system, where transfer of

transport system, where transfer of electrons is known to occur in a lipid matrix. There are three major ways of studying the
effect of water activity on enzyme activity. The first method is to carefully dry an unheated biological sample (or model system)
containing active enzymes, then to equilibrate it to various water activities and measure the velocity of enzyme activity. An
example of this approach is shown in Figure 23. Below 0.35aw (< 1% total water) there is no phospholipase activity on lecithin.
Above 0.35aw there is a nonlinear increase in activity. Maximum activity was still not reached at 0.9aw (about 12% total water
content).
b
-Amylase had no activity on starch until about 0.8aw (~2% total water); activity then increased 15 times
by 0.95
a
w (~ 12% total water). From these examples, it can be concluded that the total water content must be < 1–2% to
prevent enzyme activity.
The second method of determining the concentration of water needed for enzymatic activity is to replace some of the water with
organic solvents. Replacement of water with water-miscible glycerol reduces the activities of peroxidase and lipoxygenase when
water content is reduced below 75% (Fig. 24). At 20% and 10% water, lipoxygenase and peroxidase have zero activity.
Viscosity and specific effects of glycerol may have a bearing on these results.
In the third method, most of the water can be replaced by immiscible organic solvents in lipase-catalyzed transesterification of
tributyrin with various alcohols [118]. The “dry” lipase particles (0.48% water), suspended in dry
n
-butanol at 0.3, 0.6, 0.9, and
1.1% water (w/w) over- all, gave initial velocities of 0.8, 3.5, 5, and 4
m
mol transesterification/h.100 mg lipase. Therefore,
porcine pancreatic lipase had a maximum
v
o for transesterification at 0.9% water concentration.
Organic solvents can have two major effects on enzyme-catalyzed reactions: an effect on stability, and an effect on direction of
reversible reactions. These effects are different in water-immiscible and water-miscible solvents. In immiscible organic solvents
there is a shift in specificity form hydrolysis to synthesis. Rates of lipase-catalyzed lipid transesterification reactions are increased
more than sixfold while there is up to 16 times decrease in rate of hydrolysis when “dry” (~1% water) enzyme particles are
suspended in the immiscible solvent [4,91, 118]. Alkylation of lipases and trypsin to make them more hydrophobic has similar
effects in shifting from hydrolysis to synthesis as does the use of immiscible solvents [4, 91]. The rate of trypsincatalyzed
esterification of sucrose by oleic acid was increased six times by alkylation of some of the amino groups of trypsin [4]. There is
also a change in the stereospecificity of the products formed in organic solvents [40]. The ratio of
v
R
/
v
chiral isomers was 75
and 6 when lipasecatalyzed transesterification of vinyl butyrate with
sec
-phenethyl alcohol was performed in nitromethane versus
decane, respectively [40].
Enzymes can be more stable in organic solvents than in aqueous buffers. Ribonuclease and lysozyme become much more stable
as the water content is reduced, whether this is done by drying (ribonclease) or by adding water-immiscible organic solvents
(Table 10). At 6% water content, ribonuclease has a thermal transition temperature (
T
m) of 124°C and a half-life of 2.0 h at
145°C. The stability decreases as the water content increases; a dilute solution of ribonuclease has a
T
m of 61°C and a half-life
too short to measure [103]. Lysozyme is nearly as stable in
S
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
transport system, where transfer of electrons is known to occur in a lipid matrix. There are three major ways of studying theeffect of water activity on enzyme activity. The first method is to carefully dry an unheated biological sample (or model system)containing active enzymes, then to equilibrate it to various water activities and measure the velocity of enzyme activity. Anexample of this approach is shown in Figure 23. Below 0.35aw (< 1% total water) there is no phospholipase activity on lecithin.Above 0.35aw there is a nonlinear increase in activity. Maximum activity was still not reached at 0.9aw (about 12% total watercontent).b-Amylase had no activity on starch until about 0.8aw (~2% total water); activity then increased 15 timesby 0.95aw (~ 12% total water). From these examples, it can be concluded that the total water content must be < 1–2% toprevent enzyme activity.The second method of determining the concentration of water needed for enzymatic activity is to replace some of the water withorganic solvents. Replacement of water with water-miscible glycerol reduces the activities of peroxidase and lipoxygenase whenwater content is reduced below 75% (Fig. 24). At 20% and 10% water, lipoxygenase and peroxidase have zero activity.Viscosity and specific effects of glycerol may have a bearing on these results.In the third method, most of the water can be replaced by immiscible organic solvents in lipase-catalyzed transesterification oftributyrin with various alcohols [118]. The “dry” lipase particles (0.48% water), suspended in dryn-butanol at 0.3, 0.6, 0.9, and1.1% water (w/w) over- all, gave initial velocities of 0.8, 3.5, 5, and 4mmol transesterification/h.100 mg lipase. Therefore,porcine pancreatic lipase had a maximumvo for transesterification at 0.9% water concentration.Organic solvents can have two major effects on enzyme-catalyzed reactions: an effect on stability, and an effect on direction ofreversible reactions. These effects are different in water-immiscible and water-miscible solvents. In immiscible organic solventsthere is a shift in specificity form hydrolysis to synthesis. Rates of lipase-catalyzed lipid transesterification reactions are increasedmore than sixfold while there is up to 16 times decrease in rate of hydrolysis when “dry” (~1% water) enzyme particles aresuspended in the immiscible solvent [4,91, 118]. Alkylation of lipases and trypsin to make them more hydrophobic has similareffects in shifting from hydrolysis to synthesis as does the use of immiscible solvents [4, 91]. The rate of trypsincatalyzedesterification of sucrose by oleic acid was increased six times by alkylation of some of the amino groups of trypsin [4]. There isalso a change in the stereospecificity of the products formed in organic solvents [40]. The ratio ofvR/v chiral isomers was 75and 6 when lipasecatalyzed transesterification of vinyl butyrate withsec-phenethyl alcohol was performed in nitromethane versusdecane, respectively [40].Enzymes can be more stable in organic solvents than in aqueous buffers. Ribonuclease and lysozyme become much more stableas the water content is reduced, whether this is done by drying (ribonclease) or by adding water-immiscible organic solvents(Table 10). At 6% water content, ribonuclease has a thermal transition temperature (Tm) of 124°C and a half-life of 2.0 h at145°C. The stability decreases as the water content increases; a dilute solution of ribonuclease has aTm of 61°C and a half-lifetoo short to measure [103]. Lysozyme is nearly as stable inS
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
sistem transportasi, di mana transfer elektron diketahui terjadi dalam matriks lipid. Ada tiga cara utama mempelajari
pengaruh aktivitas air pada aktivitas enzim. Metode pertama adalah untuk berhati-hati mengeringkan sampel biologis (atau sistem model) pemanas
yang mengandung enzim aktif, maka untuk menyeimbangkan ke berbagai kegiatan air dan mengukur kecepatan aktivitas enzim. Sebuah
contoh dari pendekatan ini ditunjukkan pada Gambar 23. Di bawah 0.35aw (<1% dari total air) tidak ada aktivitas fosfolipase pada lesitin.
Di atas 0.35aw ada peningkatan nonlinear aktivitas. Aktivitas maksimum masih belum mencapai pada 0.9aw (sekitar 12% dari total air
isi).
b
-Amylase tidak aktivitas di pati sampai sekitar 0.8aw (~ 2% dari total air); Kegiatan kemudian meningkat 15 kali
dengan 0,95
a
w (~ 12% dari total air). Dari contoh-contoh ini, dapat disimpulkan bahwa kadar air keseluruhan harus <1-2% untuk
mencegah aktivitas enzim.
Metode kedua untuk menentukan konsentrasi air yang dibutuhkan untuk aktivitas enzimatik adalah untuk mengganti sebagian air dengan
pelarut organik. Penggantian air dengan gliserol air bercampur mengurangi kegiatan peroksidase dan lipoxygenase saat
kadar air berkurang di bawah 75% (Gambar. 24). Pada 20% dan 10% air, lipoxygenase dan peroksidase memiliki aktivitas nol.
Viskositas dan efek khusus gliserol mungkin memiliki bantalan pada hasil ini.
Pada metode ketiga, sebagian besar air dapat diganti dengan pelarut organik bercampur dalam lipase-dikatalisis transesterifikasi dari
tributyrin dengan berbagai alkohol [118]. "Kering" partikel lipase (0,48% air), tergantung di kering
n
-butanol di 0,3, 0,6, 0,9, dan
1,1% air (b / b) berlebihan semua, memberikan kecepatan awal 0,8, 3,5, 5, dan 4
m
mol transesterifikasi / h.100 mg lipase. Oleh karena itu,
lipase pankreas babi memiliki maksimum
v
o untuk transesterifikasi pada konsentrasi air 0,9%.
Pelarut organik dapat memiliki dua efek besar pada reaksi enzim-dikatalisasi: efek pada stabilitas, dan efek pada arah
reaksi reversibel. Efek ini berbeda dalam pelarut tak larut air dan air-larut. Dalam pelarut organik bercampur
ada pergeseran dalam bentuk kekhususan hidrolisis untuk sintesis. Tarif reaksi transesterifikasi lipid lipase-katalis meningkat
lebih dari enam kali lipat sementara ada hingga 16 kali penurunan laju hidrolisis saat "kering" (~ 1% air) partikel enzim yang
tersuspensi dalam pelarut bercampur [4,91, 118] . Alkilasi dari lipase dan tripsin untuk membuat mereka lebih hidrofobik memiliki serupa
efek dalam pergeseran dari hidrolisis sintesis seperti halnya penggunaan pelarut bercampur [4, 91]. Tingkat trypsincatalyzed
esterifikasi sukrosa oleh asam oleat meningkat enam kali oleh alkilasi dari beberapa kelompok amino tripsin [4]. Ada
juga perubahan dalam stereospesifisitas produk terbentuk dalam pelarut organik [40]. Rasio
v
R
/
v
isomer kiral adalah 75
dan 6 ketika transesterifikasi biokatalis lipase vinil butirat dengan
detik
-phenethyl alkohol dilakukan di nitromethane dibandingkan
dekana, masing-masing [40].
Enzim dapat lebih stabil dalam pelarut organik daripada di buffer air. Ribonuklease dan lisozim menjadi jauh lebih stabil
karena kadar air berkurang, apakah hal ini dilakukan dengan pengeringan (ribonclease) atau dengan menambahkan pelarut organik tak larut air
(Tabel 10). Pada 6 kadar air%, ribonuklease memiliki suhu panas transisi (
T
m) dari 124 ° C dan waktu paruh 2,0 jam pada
145 ° C. Stabilitas berkurang dengan meningkatnya kadar air; larutan encer ribonuklease memiliki
T
m dari 61 ° C dan waktu paruh
terlalu singkat untuk mengukur [103]. Lisozim hampir stabil di
S
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: