Extract - 1“A1: … there is a reactive force and buoyant force. For exa terjemahan - Extract - 1“A1: … there is a reactive force and buoyant force. For exa Bahasa Indonesia Bagaimana mengatakan

Extract - 1“A1: … there is a reacti

Extract - 1
“A1: … there is a reactive force and buoyant force. For example, let’s think of the stone suspending in the air. In such a case, there is a buoyant force and it has an mg downward. As the flies fly in the jar, there is a force of friction in the air in this time. When there is the friction force of air with the mg of the fly (pointing upward with his hand) it will stay lighter this time. In this case, the jar is lighter when the fly flies … but when it lands on the ground (the bottom of the jar), there will be no force friction of air. There will only be mg weight on the ground, so to me, it will be heavier when it lands on the ground…”

“B1: These flies are alive, there should be an entrance of exist for air in the jar. Otherwise, these flies would die. When they die, they will fall on the ground in the jar and this (talking about the scale) will measure the weight as much as the weight of the flies (showing A1), he tells the truth to me… In other words, there is (drawing on the figure in the question) the resistant force of air and these flies have an mg. Just like we say reactive force or buoyant force in any case; when they (flies) fall on the ground, there won’t be a resistant force of air, they will have already died her. We cannot determine anything before they die. As we do not know where resistant force is and what it is, we wait for them to die and then we make our calculations then”.

On the other hand, C1 and D1 in the same group came to the fore with more different views:

Extract – 2.
“D1: To me, when the fly is on the ground and staying at a constant position in the air, the value on (the scale) is fixed. A fly flies by striking the air under its wings towards the ground. It will ascend with the force with the push given by air. If it applies a weight to the bottom of the jar as much as its own weight, it will stay suspended in the air. When it is on the ground, it will have only its own mg. If it gives a push toward the bottom as much force as it will compensate in the air, it will stay fixed. In this case, total mass will not change when it is in the air or on the ground. When does it change then? (Raising the hand) If it takes off upward, in other words if it does not stay fixed in the air and it speeds upward; in this case, it will strike more push to the ground than its own weight. So, a push heavier than the weight of the fly itself will be applied to the bottom of the container. In such a case, weight will be higher than the one before relatively. However, while the fly is landing, when it is in the landing position, it will apply less force than its own weight and there will be less total mass than what is normal.”

“C1: (Turning to D1) The answer of A1 seems true to me… (fly) turns normally, when it first touches the bottom, it will be a slightly heavier… just like the scale will show 100 kg when you jump on it while you are 70 kg and it turns back to 70 kg again… it will be the same thing when this fly drops on the bottom when it dies. It will be slightly heavier for some time; but it is a change in seconds. Just like the person jumping on the scale … As a result, we say that total weight of the system did not change.”



Even though C1 says he supports the view of A1, he actually reaches the same result with D1;
since A1 claims that while the fly is flying, the jar is lighter, when it lands on the bottom of the jar, it will be heavier. C1 says that the weight will not change but there will be a slight deviation in the indicator. While D1 is saying that the weight will not change, he indicates that it is a prerequisite for the fly to stay suspended in the air and motionless at the bottom and tells it to C1 like this:

Extract – 3
“D1: … for example, you stay on the carpet. Suddenly, you accelerate and the carpet slides backward, right? … or when we think of the carpet as a flat wood (showing the table with his hand), and we place something at the back to measure it. When we accelerate (showing the direction of acceleration way and the motion way of the wood as opposite directions) the wood will strike the scale and it will show us a value. Here (turning back to the question) we take the air instead of the wood, (opening the arms in two
sides and pushing them downward) we send the air back… if the motion is with an acceleration it becomes like that … if it stays (in the air), it becomes equal when it is placed (on the bottom)…”
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Extract - 1
“A1: … there is a reactive force and buoyant force. For example, let’s think of the stone suspending in the air. In such a case, there is a buoyant force and it has an mg downward. As the flies fly in the jar, there is a force of friction in the air in this time. When there is the friction force of air with the mg of the fly (pointing upward with his hand) it will stay lighter this time. In this case, the jar is lighter when the fly flies … but when it lands on the ground (the bottom of the jar), there will be no force friction of air. There will only be mg weight on the ground, so to me, it will be heavier when it lands on the ground…”

“B1: These flies are alive, there should be an entrance of exist for air in the jar. Otherwise, these flies would die. When they die, they will fall on the ground in the jar and this (talking about the scale) will measure the weight as much as the weight of the flies (showing A1), he tells the truth to me… In other words, there is (drawing on the figure in the question) the resistant force of air and these flies have an mg. Just like we say reactive force or buoyant force in any case; when they (flies) fall on the ground, there won’t be a resistant force of air, they will have already died her. We cannot determine anything before they die. As we do not know where resistant force is and what it is, we wait for them to die and then we make our calculations then”.

On the other hand, C1 and D1 in the same group came to the fore with more different views:

Extract – 2.
“D1: To me, when the fly is on the ground and staying at a constant position in the air, the value on (the scale) is fixed. A fly flies by striking the air under its wings towards the ground. It will ascend with the force with the push given by air. If it applies a weight to the bottom of the jar as much as its own weight, it will stay suspended in the air. When it is on the ground, it will have only its own mg. If it gives a push toward the bottom as much force as it will compensate in the air, it will stay fixed. In this case, total mass will not change when it is in the air or on the ground. When does it change then? (Raising the hand) If it takes off upward, in other words if it does not stay fixed in the air and it speeds upward; in this case, it will strike more push to the ground than its own weight. So, a push heavier than the weight of the fly itself will be applied to the bottom of the container. In such a case, weight will be higher than the one before relatively. However, while the fly is landing, when it is in the landing position, it will apply less force than its own weight and there will be less total mass than what is normal.”

“C1: (Turning to D1) The answer of A1 seems true to me… (fly) turns normally, when it first touches the bottom, it will be a slightly heavier… just like the scale will show 100 kg when you jump on it while you are 70 kg and it turns back to 70 kg again… it will be the same thing when this fly drops on the bottom when it dies. It will be slightly heavier for some time; but it is a change in seconds. Just like the person jumping on the scale … As a result, we say that total weight of the system did not change.”



Even though C1 says he supports the view of A1, he actually reaches the same result with D1;
since A1 claims that while the fly is flying, the jar is lighter, when it lands on the bottom of the jar, it will be heavier. C1 says that the weight will not change but there will be a slight deviation in the indicator. While D1 is saying that the weight will not change, he indicates that it is a prerequisite for the fly to stay suspended in the air and motionless at the bottom and tells it to C1 like this:

Extract – 3
“D1: … for example, you stay on the carpet. Suddenly, you accelerate and the carpet slides backward, right? … or when we think of the carpet as a flat wood (showing the table with his hand), and we place something at the back to measure it. When we accelerate (showing the direction of acceleration way and the motion way of the wood as opposite directions) the wood will strike the scale and it will show us a value. Here (turning back to the question) we take the air instead of the wood, (opening the arms in two
sides and pushing them downward) we send the air back… if the motion is with an acceleration it becomes like that … if it stays (in the air), it becomes equal when it is placed (on the bottom)…”
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Extract - 1
"A1: ... ada kekuatan reaktif dan gaya apung. Sebagai contoh, mari kita berpikir tentang batu menangguhkan di udara. Dalam kasus seperti itu, ada gaya apung dan memiliki mg bawah. Sebagai lalat terbang dalam stoples, ada kekuatan gesekan di udara saat ini. Ketika ada gaya gesekan udara dengan mg fly (menunjuk ke atas dengan tangan) akan tetap ringan saat ini. Dalam hal ini, tabung lebih ringan ketika lalat terbang ... tapi ketika mendarat di tanah (bagian bawah tabung), tidak akan ada gesekan angkatan udara. Hanya akan ada berat mg di tanah, sehingga untuk saya, itu akan lebih berat ketika mendarat di tanah ... " "B1: lalat ini hidup, harus ada pintu masuk yang ada untuk udara dalam stoples. Jika tidak, lalat tersebut akan mati. Ketika mereka mati, mereka akan jatuh di tanah dalam stoples dan ini (berbicara tentang skala) akan mengukur berat badan sebanyak berat lalat (menunjukkan A1), ia mengatakan kebenaran kepada saya ... Dengan kata lain, ada adalah (menggambar pada sosok dalam pertanyaan) angkatan tahan udara dan lalat ini memiliki mg. Sama seperti kita katakan kekuatan reaktif atau gaya apung dalam hal apapun; ketika mereka (lalat) jatuh di tanah, tidak akan ada kekuatan tahan udara, mereka akan sudah meninggal dia. Kita tidak bisa menentukan apa-apa sebelum mereka mati. Seperti yang kita tidak tahu di mana kekuatan tahan dan apa itu, kita menunggu mereka mati dan kemudian kita membuat perhitungan kami kemudian ". Di sisi lain, C1 dan D1 di kelompok yang sama datang ke depan dengan lebih pandangan yang berbeda: . Extract - 2 "D1: Bagi saya, ketika lalat berada di tanah dan tinggal di posisi konstan di udara, nilai pada (skala) adalah tetap. Seekor lalat terbang dengan memukul udara di bawah sayapnya ke tanah. Ini akan naik dengan kekuatan dengan menekan diberikan oleh udara. Jika berlaku berat ke bawah tabung sebanyak beratnya sendiri, ia akan tetap melayang di udara. Ketika itu di tanah, itu hanya akan memiliki mg sendiri. Jika memberikan dorongan ke arah bawah sebanyak kekuatan karena akan mengkompensasi di udara, itu akan tetap tetap. Dalam hal ini, massa total tidak akan berubah ketika di udara atau di darat. Kapan itu berubah maka? (Meningkatkan tangan) Jika lepas landas ke atas, dengan kata lain jika tidak tinggal tetap di udara dan kecepatan atas; dalam kasus ini, itu akan menyerang lebih mendorong ke tanah dari beratnya sendiri. Jadi, push berat daripada berat lalat itu sendiri akan diterapkan pada bagian bawah wadah. Dalam kasus seperti itu, berat badan akan lebih tinggi dari yang sebelumnya relatif. Namun, sementara lalat mendarat, bila dalam posisi mendarat, itu akan berlaku kekuatan kurang dari beratnya sendiri dan akan ada massa total kurang dari apa yang normal ". "C1: (Beralih ke D1) Jawaban dari A1 tampaknya benar bagi saya ... (terbang) ternyata normal, ketika pertama kali menyentuh bagian bawah, itu akan menjadi sedikit lebih berat ... seperti skala akan menunjukkan 100 kg ketika Anda melompat di atasnya saat Anda 70 kg dan ternyata kembali ke 70 kg lagi ... itu akan menjadi hal yang sama ketika terbang ini turun di bagian bawah ketika mati. Ini akan menjadi sedikit lebih berat untuk beberapa waktu; tetapi merupakan perubahan dalam hitungan detik. Sama seperti orang melompat pada skala ... Sebagai hasilnya, kami mengatakan bahwa berat total sistem tidak berubah ". Meskipun C1 mengatakan ia mendukung pandangan A1, ia benar-benar mencapai hasil yang sama dengan D1, sejak A1 mengklaim bahwa sedangkan fly terbang, tabung lebih ringan, ketika mendarat di bagian bawah tabung, itu akan menjadi lebih berat. C1 mengatakan bahwa berat badan tidak akan berubah, tapi akan ada sedikit penyimpangan dalam indikator. Sementara D1 mengatakan bahwa berat badan tidak akan berubah, ia menunjukkan bahwa itu adalah prasyarat untuk terbang untuk tetap melayang di udara dan bergerak di bagian bawah dan mengatakan itu untuk c1 seperti ini: Extract - 3 "D1: ... misalnya, Anda tinggal di karpet. Tiba-tiba, Anda mempercepat dan karpet slide mundur, kan? ... Atau ketika kita berpikir tentang karpet sebagai kayu datar (menunjukkan meja dengan tangannya), dan kita menempatkan sesuatu di belakang untuk mengukurnya. Ketika kita mempercepat (menunjukkan arah percepatan jalan dan cara gerak kayu sebagai arah yang berlawanan) kayu akan menyerang skala dan itu akan menunjukkan nilai. Di sini (berputar kembali ke pertanyaan) kita mengambil udara bukan kayu, (membuka tangan dalam dua sisi dan mendorong mereka ke bawah) kami mengirimkan udara kembali ... jika gerakan tersebut dengan percepatan menjadi seperti itu ... jika tetap (di udara), menjadi sama ketika ditaruh (di bawah) ... "


















Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: