For reliable clock recovery at the receiver, one usually imposes a max terjemahan - For reliable clock recovery at the receiver, one usually imposes a max Bahasa Indonesia Bagaimana mengatakan

For reliable clock recovery at the

For reliable clock recovery at the receiver, one usually imposes a maximum run length constraint on the generated channel sequence[citation needed], i.e., the maximum number of consecutive ones or zeros is bounded to a reasonable number. A clock period is recovered by observing transitions in the received sequence, so that a maximum run length guarantees such clock recovery, while sequences without such a constraint could seriously hamper the detection quality.[citation needed]

After line coding, the signal is put through a "physical channel", either a "transmission medium" or "data storage medium".[1][2] Sometimes the characteristics of two very different-seeming channels are similar enough that the same line code is used for them. The most common physical channels are:

the line-coded signal can directly be put on a transmission line, in the form of variations of the voltage or current (often using differential signaling).
the line-coded signal (the "baseband signal") undergoes further pulse shaping (to reduce its frequency bandwidth) and then modulated (to shift its frequency) to create an "RF signal" that can be sent through free space.
the line-coded signal can be used to turn on and off a light source in free-space optical communication, most commonly used in an infrared remote control.
the line-coded signal can be printed on paper to create a bar code.
the line-coded signal can be converted to magnetized spots on a hard drive or tape drive.
the line-coded signal can be converted to pits on an optical disc.
Unfortunately, most long-distance communication channels cannot transport a DC component[citation needed]. The DC component is also called the disparity, the bias, or the DC coefficient. The simplest possible line code, called unipolar because it has an unbounded DC component, gives too many errors on such systems.

Most line codes eliminate the DC component – such codes are called DC-balanced, zero-DC, DC-free, zero-bias, DC equalized, etc.[citation needed] There are three ways of eliminating the DC component:

Use a constant-weight code. In other words, each transmitted code word is corrected such that every code word that contains some positive or negative levels also contains enough of the opposite levels, such that the average level over each code word is zero. For example, Manchester code and Interleaved 2 of 5.
Use a paired disparity code. In other words, the transmitter has to make sure that every code word that averages to a negative level is paired with another code word that averages to a positive level. Therefore it must keep track of the running DC buildup, and always pick the code word that pushes the DC level back towards zero. The receiver is designed so that either code word of the pair decodes to the same data bits. For example, AMI, 8B10B, 4B3T, etc.
Use a scrambler. For example, the scrambler specified in RFC 2615 for 64b/66b encoding.
Unfortunately, several long-distance communication channels have polarity ambiguity.[citation needed] There are three ways of providing unambiguous reception of "0" bits or "1" bits over such channels:

differential coding
MLT-3 encoding
invert the whole stream when inverted syncwords are detected
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Untuk jam dapat diandalkan pemulihan pada penerima, satu biasanya membebankan kendala jangka panjang maksimum di urutan dihasilkan channel [rujukan?], yaitu, jumlah maksimum yang berturut-turut atau nol dibatasi ke nomor yang wajar. Periode clock pulih dengan mengamati transisi dalam urutan yang diterima, sehingga maksimum menjalankan panjang menjamin pemulihan jam tersebut, sementara urutan tanpa kendala seperti serius bisa menghambat deteksi kualitas.[rujukan?]Setelah baris kode, sinyal diletakkan melalui "fisik channel", "medium transmisi" atau "media penyimpanan data".[1][2] kadang-kadang Karakteristik dari dua saluran sangat berbeda tampaknya cukup mirip bahwa baris kode yang sama digunakan untuk mereka. Saluran fisik yang paling umum adalah:baris-kode sinyal dapat langsung menempatkan di jalur transmisi, dalam bentuk variasi tegangan atau arus (sering menggunakan sinyal diferensial).baris-kode sinyal ("sinyal baseband") mengalami lebih lanjut pulsa membentuk (untuk mengurangi frekuensi dengan bandwidth) dan kemudian dimodulasi (untuk menggeser frekuensi) untuk membuat "Sinyal RF" yang dapat dikirim melalui ruang bebas.sinyal baris-kode dapat digunakan untuk mengaktifkan dan menonaktifkan sumber cahaya dalam ruang bebas optik komunikasi, yang paling umum digunakan dalam remote control infra merah.baris-kode sinyal dapat dicetak di atas kertas untuk membuat kode bar.baris-kode sinyal dapat dikonversi ke bermagnet tempat pada hard drive atau drive pita.baris-kode sinyal dapat dikonversi ke lubang pada cakram optik.Sayangnya, kebanyakan komunikasi jarak jauh saluran tidak dapat mengangkut komponen DC [rujukan?]. Komponen DC disebut juga perbedaan, bias, atau koefisien DC. Kode mungkin garis sederhana, disebut ekakutub karena memiliki komponen DC yang tak terbatas, memberikan terlalu banyak kesalahan pada sistem seperti itu.Kebanyakan baris kode menghilangkan komponen DC-kode tersebut disebut DC-seimbang, nol-DC, DC-gratis, nol-bias, DC dipersamakan siapa, dll [rujukan?] ada tiga cara menghilangkan komponen DC:Gunakan kode konstan-berat. Dengan kata lain, setiap kata kode yang dikirimkan dibetulkan sehingga setiap kata kode yang berisi beberapa tingkat yang positif atau negatif juga mengandung cukup tingkat berlawanan, sehingga tingkat rata-rata lebih dari setiap kode kata adalah nol. Sebagai contoh, kode Manchester dan Interleaved 2 dari 5.Gunakan kode kesenjangan berpasangan. Dengan kata lain, pemancar memiliki untuk memastikan bahwa setiap kata kode yang rata-rata tingkat negatif yang dipasangkan dengan kata kode lain bahwa rata-rata tingkat yang positif. Oleh karena itu harus melacak penumpukan DC berjalan, dan selalu memilih kata kode yang mendorong DC tingkat kembali menuju titik nol. Penerima dirancang sehingga baik kata kode dari pasangan decode untuk bit data yang sama. Sebagai contoh, AMI, 8B10B, 4B3T, dll.Gunakan Pengacak. Sebagai contoh, Pengacak ditentukan dalam RFC 2615 untuk pengkodean 64b 66b.Sayangnya, beberapa saluran komunikasi jarak jauh memiliki polaritas ambiguitas.[rujukan?] Ada tiga cara memberikan jelas penerimaan bit "0" atau "1" bit lebih dari saluran tersebut:pengkodean diferensialPengkodean MLT-3membalikkan seluruh aliran ketika terbalik syncwords terdeteksi
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
For reliable clock recovery at the receiver, one usually imposes a maximum run length constraint on the generated channel sequence[citation needed], i.e., the maximum number of consecutive ones or zeros is bounded to a reasonable number. A clock period is recovered by observing transitions in the received sequence, so that a maximum run length guarantees such clock recovery, while sequences without such a constraint could seriously hamper the detection quality.[citation needed]

After line coding, the signal is put through a "physical channel", either a "transmission medium" or "data storage medium".[1][2] Sometimes the characteristics of two very different-seeming channels are similar enough that the same line code is used for them. The most common physical channels are:

the line-coded signal can directly be put on a transmission line, in the form of variations of the voltage or current (often using differential signaling).
the line-coded signal (the "baseband signal") undergoes further pulse shaping (to reduce its frequency bandwidth) and then modulated (to shift its frequency) to create an "RF signal" that can be sent through free space.
the line-coded signal can be used to turn on and off a light source in free-space optical communication, most commonly used in an infrared remote control.
the line-coded signal can be printed on paper to create a bar code.
the line-coded signal can be converted to magnetized spots on a hard drive or tape drive.
the line-coded signal can be converted to pits on an optical disc.
Unfortunately, most long-distance communication channels cannot transport a DC component[citation needed]. The DC component is also called the disparity, the bias, or the DC coefficient. The simplest possible line code, called unipolar because it has an unbounded DC component, gives too many errors on such systems.

Most line codes eliminate the DC component – such codes are called DC-balanced, zero-DC, DC-free, zero-bias, DC equalized, etc.[citation needed] There are three ways of eliminating the DC component:

Use a constant-weight code. In other words, each transmitted code word is corrected such that every code word that contains some positive or negative levels also contains enough of the opposite levels, such that the average level over each code word is zero. For example, Manchester code and Interleaved 2 of 5.
Use a paired disparity code. In other words, the transmitter has to make sure that every code word that averages to a negative level is paired with another code word that averages to a positive level. Therefore it must keep track of the running DC buildup, and always pick the code word that pushes the DC level back towards zero. The receiver is designed so that either code word of the pair decodes to the same data bits. For example, AMI, 8B10B, 4B3T, etc.
Use a scrambler. For example, the scrambler specified in RFC 2615 for 64b/66b encoding.
Unfortunately, several long-distance communication channels have polarity ambiguity.[citation needed] There are three ways of providing unambiguous reception of "0" bits or "1" bits over such channels:

differential coding
MLT-3 encoding
invert the whole stream when inverted syncwords are detected
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: