clarified in Figures 31–34. Figure 31 shows a drag-producingwake behin terjemahan - clarified in Figures 31–34. Figure 31 shows a drag-producingwake behin Bahasa Indonesia Bagaimana mengatakan

clarified in Figures 31–34. Figure

clarified in Figures 31–34. Figure 31 shows a drag-producing
wake behind a hydrofoil where the induced flow between a pair
ofshed vortices is pointed upstream. When the foil is oscillated,
the wave train shown in Fig. 32 is produced when the induced
velocity points in the downstream direction, which gives rise to
thrust. The clapping mode produces the mirror-image vortex train
shown in Fig. 33 and the waving mode produces the staggered
vortex train shown in Fig. 34. The cross-stream maps in Figs. 26
and 27 were examined for clues to higher efficiency in the waving
mode. The wake is three-dimensional due to the finite nature of
the flaps. The figures show that the shed axial vortex lying within
the divider propagates inward toward the axis of the model while
the outer shed axial vortex shows no such tendency. This is shown
schematically in Fig. 30. After it is fully formed, the inner axial
vortex turns elliptic and takes an inclined position in the y-z plane.
In the clapping mode, during the outward motion of the flaps, four
axial vortices would tend to converge near the model axis increasing
vortex-vortex and vortex-wall interactions. The induced drag
will likely be more affected in the clapping mode than in the
waving mode. 4 Phased Vortex Seeding From Forebody for Thrust
Modulation in a Rigid Cylinder With Flapping Foil
Thrusters
4.1 Results. Measurements of axial force are shown in Fig.
35 where the ensemble averaged traces are compared for nose
slider on/off cases. The time lag in the on-case is zero with respect
to the tail flaps. Mainly the peak levels of thrust, and to a lesser
extent the drag values as well, are enhanced by the nose vortex
seeding. The time integrated value increases in the on-case, but is
only above zero within the uncertainties of measurements. The
effect of a lag in nose vortex shedding is shown in Fig. 36. Particularly
the thrust peaks are highest at a lag of 300 degrees and
lowest at 120 degrees. The difference between the two lags is 180
degrees which shows that an exquisitely phase-dependent mechanism
is involved.
These experiments suggested that nose vortex seeding did have
a temporal effect on the axial forces. The experiments were repeated
at a Strouhal number where the net axial force was clearly
a thrust. A perforated plate was installed in the downstream end of
the test section to steady the low speed streams. The results are
shown in Figs. 37 and 38. Figure 37 shows the temporal effects of
a phase lag in nose vortex seeding. The thrust peak is highest at
300 deg and lowest at 120 deg. The effects of phase lag on the
time integrated thrust levels are shown in Fig. 38 at three Strouhal
numbers St, of tail flapping (5fA/U). A sinusoidal effect of lag
on net thrust is present. The net thrust is enhanced around 120 deg
and reduced at 300 deg. The integrated effect is opposite to the
effects on peak values of thrust and drag.
Because the mechanism is exquisitely dependent on Strouhal
number St, care had to be taken in tracking the freestream speed.
Recall that a perforated plate was installed in the test section to
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
menjelaskan dalam angka 31-34. 31 peraga menunjukkan memproduksi dragbangun di belakang menggunakan kapal hydrofoil mana aliran disebabkan antara pasanganofshed pusaran menunjuk hulu. Kapan foil oscillated,Kereta gelombang ditampilkan dalam Fig. 32 yang dihasilkan ketika diinduksikecepatan poin ke arah hilir, yang menimbulkan kedorong. Modus bertepuktangan menghasilkan gambar cermin vortex keretaditampilkan dalam Fig. 33 dan menghasilkan modus melambaikan tangan yang terhuyung-huyungVortex kereta ditampilkan dalam Fig. 34. Aliran salib peta dalam rajah-rajah 26dan 27 diperiksa untuk efisiensi yang lebih tinggi di melambaikanmodus. Bangun tiga-dimensi karena sifat terbatastutup. Angka-angka menunjukkan bahwa gudang aksial vortex berbaring dalampembagi menjalar ke dalam ke arah sumbu model sementaravortex aksial luar gudang menunjukkan tidak ada kecenderungan tersebut. Hal ini ditunjukkanUML di 30 GB. Setelah itu sepenuhnya terbentuk, batin aksialVortex ternyata elips dan mengambil posisi miring di bidang y-z.Dalam modus bertepuktangan, selama gerakan luar flaps, empatpusaran aksial akan cenderung berkumpul di dekat model sumbu meningkatkanpusaran-pusaran dan pusaran-dinding interaksi. Drag diinduksiakan cenderung lebih terpengaruh dalam modus bertepuktangan daripada dimelambai-lambaikan modus. 4 bertahap Vortex penyemaian dari Forebody untuk dorongModulasi dalam silinder kaku dengan mengepak FoilThrusters4.1 hasil. Pengukuran kekuatan aksial ditunjukkan pada gambar.35 mana ansambel rata-rata jejak dibandingkan untuk hidungslider/kasus. Lag waktu dalam kasus yang adalah nol dengan hormatuntuk tutup ekor. Terutama tingkat puncak dorong, dan untuk lebih rendahtingkat nilai drag juga, ditingkatkan oleh vortex hidungpenyemaian. Nilai waktu yang terintegrasi meningkat dalam kasus, tetapi adalahhanya di atas nol dalam ketidakpastian pengukuran. TheEfek lag hidung vortex menumpahkan ditampilkan dalam Fig. 36. Terutamadorong puncak tertinggi di yang ketinggalan 300 derajat danterendah di 120 derajat. Perbedaan antara dua tertinggal adalah 180derajat yang menunjukkan bahwa mekanisme fase bergantung pada indahterlibat.Percobaan ini menyarankan bahwa hidung vortex penyemaian memang memilikiSementara efek pada kekuatan aksial. Percobaan yang diulangpada Strouhal nomor yang mana net aksial memaksa adalah jelasdorong. Piring berlubang dipasang pada akhir hilirBagian tes untuk stabil Sungai kecepatan rendah. Hasilditampilkan dalam rajah-rajah 37 dan 38. 37 angka menunjukkan efek fosilfase lag dalam hidung vortex penyemaian. The peak dorong tertinggi di300 derajat dan terendah di 120 derajat. Efek dari tahap lag padawaktu yang dorong terintegrasi tingkat ditampilkan dalam Fig. 38 di tiga Strouhalnomor St, ekor senewen (5fA/U). Efek sinusoidal lagdi dorong bersih adalah hadir. Dorong bersih ditingkatkan sekitar 120 derajatdan berkurang di 300 derajat. Efek terpadu adalah berlawananefek pada nilai-nilai puncak dorong dan tarik.Karena mekanisme indah bergantung pada Strouhalnomor St, perawatan harus diambil dalam melacak kecepatan freestream.Ingat bahwa piring berlubang dipasang di bagian tes untuk
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
clarified in Figures 31–34. Figure 31 shows a drag-producing
wake behind a hydrofoil where the induced flow between a pair
ofshed vortices is pointed upstream. When the foil is oscillated,
the wave train shown in Fig. 32 is produced when the induced
velocity points in the downstream direction, which gives rise to
thrust. The clapping mode produces the mirror-image vortex train
shown in Fig. 33 and the waving mode produces the staggered
vortex train shown in Fig. 34. The cross-stream maps in Figs. 26
and 27 were examined for clues to higher efficiency in the waving
mode. The wake is three-dimensional due to the finite nature of
the flaps. The figures show that the shed axial vortex lying within
the divider propagates inward toward the axis of the model while
the outer shed axial vortex shows no such tendency. This is shown
schematically in Fig. 30. After it is fully formed, the inner axial
vortex turns elliptic and takes an inclined position in the y-z plane.
In the clapping mode, during the outward motion of the flaps, four
axial vortices would tend to converge near the model axis increasing
vortex-vortex and vortex-wall interactions. The induced drag
will likely be more affected in the clapping mode than in the
waving mode. 4 Phased Vortex Seeding From Forebody for Thrust
Modulation in a Rigid Cylinder With Flapping Foil
Thrusters
4.1 Results. Measurements of axial force are shown in Fig.
35 where the ensemble averaged traces are compared for nose
slider on/off cases. The time lag in the on-case is zero with respect
to the tail flaps. Mainly the peak levels of thrust, and to a lesser
extent the drag values as well, are enhanced by the nose vortex
seeding. The time integrated value increases in the on-case, but is
only above zero within the uncertainties of measurements. The
effect of a lag in nose vortex shedding is shown in Fig. 36. Particularly
the thrust peaks are highest at a lag of 300 degrees and
lowest at 120 degrees. The difference between the two lags is 180
degrees which shows that an exquisitely phase-dependent mechanism
is involved.
These experiments suggested that nose vortex seeding did have
a temporal effect on the axial forces. The experiments were repeated
at a Strouhal number where the net axial force was clearly
a thrust. A perforated plate was installed in the downstream end of
the test section to steady the low speed streams. The results are
shown in Figs. 37 and 38. Figure 37 shows the temporal effects of
a phase lag in nose vortex seeding. The thrust peak is highest at
300 deg and lowest at 120 deg. The effects of phase lag on the
time integrated thrust levels are shown in Fig. 38 at three Strouhal
numbers St, of tail flapping (5fA/U). A sinusoidal effect of lag
on net thrust is present. The net thrust is enhanced around 120 deg
and reduced at 300 deg. The integrated effect is opposite to the
effects on peak values of thrust and drag.
Because the mechanism is exquisitely dependent on Strouhal
number St, care had to be taken in tracking the freestream speed.
Recall that a perforated plate was installed in the test section to
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: