Chemical ThermodynamicsThe scientific discipline that intersects the a terjemahan - Chemical ThermodynamicsThe scientific discipline that intersects the a Bahasa Indonesia Bagaimana mengatakan

Chemical ThermodynamicsThe scientif

Chemical Thermodynamics
The scientific discipline that intersects the areas of chemistry and physic is commonly known as physical chemistry, and it is in that area that a thorough study of thermodynamics takes place. Physics concerns itself heavily with the mechanics of events in nature. Certainly changes in energy -- however measured, whether it be heat, light, work, etc. -- are clearly physical events that also have a chemical nature to them. Thermodynamics is the study of energy changes accompanying physical and chemical changes. The term itself clearly suggests what is happening -- "thermo", from temperature, meaning energy, and "dynamics", which means the change over time. Thermodynamics can be roughly encapsulated with these topics:

Heat and Work
Energy
Enthalpy
Entropy
Gibbs Free Energy

Heat and Work
Heat and work are both forms of energy. They are also related forms, in that one can be transformed into the other. Heat energy (such as steam engines) can be used to do work (such as pushing a train down the track). Work can be transformed into heat, such as might be experienced by rubbing your hands together to warm them up.

Work and heat can both be described using the same unit of measure. Sometimes the calorie is the unit of measure, and refers to the amount of heat required to raise one (1) gram of water one (1) degree Celsius. Heat energy is measured in kilocalories, or 1000 calories. Typically, we use the SI units of Joules (J) and kilojoules (kJ). One calorie of heat is equivalent to 4.187 J. You will also encounter the term specific heat, the heat required to raise one (1) gram of a material one (1) degree Celsius. Specific heat, given by the symbol "C", is generally defined as:

C =
q

MΔT

Where:

C = specific heat in cal/g-°C
q = heat added in calories,
m = mass in grams
ΔT = rise in temperature of the material in °C.

The value of C for water is 1.00 cal/g-°C.

The values for specific heat that are reported in the literature are usually listed at a specific pressure and/or volume, and you need to pay attention to these settings when using values from textbooks in problems or computer models.

Example Problem: If a 2.34 g substance at 22°C with a specific heat of 3.88 cal/g-°C is heated with 124 cal of energy, what is the new temperature of the substance?

Answer:
  ΔT =
q

MC
  ΔT =
(124)

(2.34)(3.88)
= 13.7°C
  new T = 22 + 13.7 = 35.7°C

Two other common heat variables are the heat of fusion and the heat of vaporization. Heat of fusion is the heat required to melt a substance at its melting temperature, while the heat of vaporization is the heat required to evaporate the substance at its boiling point.

Chemical work is primarily related to that of expansion. In physics, work is defined as:

w = d × f

Where:

w = work, in joules (N×m) (or calories, but we are using primarily SI units)
d = distance in meters
f = opposing force in Newtons (kg*m/s2)

In chemical reactions, work is generally defined as :

w = distance × (area × pressure)

The value of distance times area is actually the volume. If we imagine a reaction taking place in a container of some volume, we measure work by pressure times the change in volume.
w = ΔV × P

Where:

ΔV is the change in volume, in liters

If ΔV=0, then no work is done.

Example Problem: Calculate the work that must be done at standard temperature and pressure (STP is 0°C and 1 atm) to make room for the products of the octane combustion:

2 C8H18 + 25 O2 --> 16 CO2 + 18 H2O

Answer:
  Knowing that 25 moles of gas are replaced by 34 moles of gas in this reaction, we can
  calculate a net increase of 9 moles of gas. Knowing the molar volume of an ideal gas at
  STP (22.4 L/mol), the change in volume and the work of expansion can be calculated
  dV = 9 moles ∗ 22.4 L/mol = 202 L
  The external pressure is 1.0 atm (standard pressure), so the work required is:
  w = dV ∗ P = 202 L ∗ 1.00 atm = 202 l-atm
  Using the conversion factor of 1 L-atm = 101 J, the amount of work in joules is:
  w = 202 L-atm ∗ 101 j/L-atm = 2000 J, or 2kJ of energy
Energy
You might remember the first law of thermodynamics: energy cannot be created or destroyed. Energy can only change form. Chemically, that usually means energy is converted to work, energy in the form of heat moves from one place to another, or energy is stored up in the constituent chemicals. You have seen how to calculate work. Heat is defined as that energy that is transferred as a result of a temperature difference between a system and its surroundings. Mathematically, we can look at the change in energy of a system as being a function of both heat and work:

ΔE = q + w

Where:

ΔE is the change in internal energy of a system
q is the heat flowing into the system
w is the work being done by the system

If q is positive, we say that the reaction is endothermic, that is, heat flows into the reaction from the outside surroundings. If q is negative, then the reaction is exothermic, that is, heat is given off to the external surroundings.

You might also remember the terms kinetic energy and potential energy. Kinetic energy is the energy of motion -- the amount of energy in an object that is moving. Potential energy is stationary, stored energy. If you think of a ball sitting on the edge of a table, it has potential energy in the energy possible if it falls off the table. Potential energy can be transformed into kinetic energy if and when the ball actually rolls off the table and is in motion. The total energy of the system is defined as the sum of kinetic and potential energies.

In descriptions of the energy of a system, you will also see the phrase "state properties". A state property is a quantity whose value is independent of the past history of the substance. Typical state properties are altitude, pressure, volume, temperature, and internal energy.

Enthalpy
Enthalpy is an interesting concept: it is defined by its change rather than a single entity. A state property, the word enthalpy comes from the Greek "heat inside". If you have a chemical system that undergoes some kind of change but has a fixed volume, the heat output is equal to the change in internal energy (q = ΔE). We will define the enthalpy change, ΔH, of a system as being equal to its heat output at constant pressure:

dH = q at constant pressure

Where:

ΔH = change in enthalpy

We define enthalpy itself as:

H = E + PV

Where:

H = enthalpy
E = energy of the system
PV = pressure in atm times volume in liters

You will not need to be able to calculate the enthalpy directly; in chemistry, we are only interested in the change in enthalpy, or ΔH.

ΔH = Hfinal - Hinitial or ΔH = H(products) - H(reactants)

Tables of enthalpies are generally given as ΔH values.

Example Problem: Calculate the ΔH value of the reaction:
HCl + NH3 → NH4Cl
(ΔH values for HCl is -92.30; NH3 is -80.29; NH4Cl is -314.4)

Answer:
  ΔH = ΔHproducts - ΔHreactants
  ΔHproducts = -314.4
  ΔHreactants = -92.30 + (-80.29) = -172.59
  ΔH = -314.4 - 172.59 = 141.8

We can also represent enthalpy change with the equation:

ΔH = ΔE + P ΔV

Where:

ΔV is the change in volume, in liters
P is the constant pressure

If you recall, work is defined as P ΔV, so enthalpy changes are simply a reflection of the amount of energy change (energy going in or out, endothermic or exothermic), and the amount of work being done by the reaction. For example, if ΔE = -100 kJ in a certain combustion reaction, but 10 kJ of work needs to be done to make room for the products, the change in enthalpy is:

ΔH = -100 kJ + 10 kJ = -90 kJ

This is an exothermic reaction (which is expected with combustion), and 90 kJ of energy is released to the environment. Basically, you get warmer. Notice the convention used here -- a negative value represents energy coming out of the system.

You can also determine ΔH for a reaction based on bond dissociation energies. Breaking bonds requires energy while forming bonds releases energy. In a given equation, you must determine what kinds of bonds are broken and what kind of bonds are formed. Use this information to calculate the amount of energy used to break bonds and the amount used to form bonds. If you subtract the amount to break bonds from the amount to form bonds, you will have the ΔH for the reaction.

Example Problem: Calculate ΔH for the reaction:
N2 + 3H2 → 2NH3
(The bond dissociation energy for N-N is 163 kJ/mol; H-H is 436 kJ/mol; N-H is 391 kJ/mol)

Answer:
  ΔH = ΔHproducts - ΔHreactants
  To use the bond dissociation energies, we must determine how many bonds
  are in the products and the reactants. In NH3 there are 3 N-H bonds so in 2 NH3
  there are 6 N-H bonds. In N2 there is 1 N-N bond and in 3H2 there are 3 H-H bonds.
  ΔHproducts = 6(391) = 2346
  ΔHreactants = 163 + 3(436) = 1471
  ΔH = 2346 - 1471 = 875
Entropy
Entropy is a measure of the disorder of a system. Take your room as an example. Left to itself, your room will increase in entropy (i.e., get messier) if no work (cleaning up) is done to contain the disorder. Work must be done to keep the entropy of the system low. Entropy comes from the second law of thermodynamics, which states that all systems tend to reach a state of equilibrium. The significance of entropy is that when a spontaneous change occurs in a system, it will always be found that if the total entropy change for everything involved is calculated, a positive value will be obtained. Simply, all spontaneous changes in an isolated chemical system occur with an increase in entropy. Entropy, like temperature, pressure, and enthalpy, is also a state property and is represented in the literature by the symbol "S". Like enthalpy, you can calculate the change of S (ΔS).

Δ S = Sfinal - S initial or Δ S = S (products) - S (reactants)

Where:

ΔS is change in entropy
Sfinal and Sinitial are the final and initial entropies, respectively

The following tab
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Chemical ThermodynamicsThe scientific discipline that intersects the areas of chemistry and physic is commonly known as physical chemistry, and it is in that area that a thorough study of thermodynamics takes place. Physics concerns itself heavily with the mechanics of events in nature. Certainly changes in energy -- however measured, whether it be heat, light, work, etc. -- are clearly physical events that also have a chemical nature to them. Thermodynamics is the study of energy changes accompanying physical and chemical changes. The term itself clearly suggests what is happening -- "thermo", from temperature, meaning energy, and "dynamics", which means the change over time. Thermodynamics can be roughly encapsulated with these topics: Heat and Work Energy Enthalpy Entropy Gibbs Free Energy Heat and WorkHeat and work are both forms of energy. They are also related forms, in that one can be transformed into the other. Heat energy (such as steam engines) can be used to do work (such as pushing a train down the track). Work can be transformed into heat, such as might be experienced by rubbing your hands together to warm them up.Work and heat can both be described using the same unit of measure. Sometimes the calorie is the unit of measure, and refers to the amount of heat required to raise one (1) gram of water one (1) degree Celsius. Heat energy is measured in kilocalories, or 1000 calories. Typically, we use the SI units of Joules (J) and kilojoules (kJ). One calorie of heat is equivalent to 4.187 J. You will also encounter the term specific heat, the heat required to raise one (1) gram of a material one (1) degree Celsius. Specific heat, given by the symbol "C", is generally defined as:C = qMΔTWhere:C = specific heat in cal/g-°Cq = heat added in calories,m = mass in gramsΔT = rise in temperature of the material in °C.The value of C for water is 1.00 cal/g-°C.The values for specific heat that are reported in the literature are usually listed at a specific pressure and/or volume, and you need to pay attention to these settings when using values from textbooks in problems or computer models.Example Problem: If a 2.34 g substance at 22°C with a specific heat of 3.88 cal/g-°C is heated with 124 cal of energy, what is the new temperature of the substance?Answer: ΔT = qMC ΔT = (124)(2.34)(3.88) = 13.7°C new T = 22 + 13.7 = 35.7°CTwo other common heat variables are the heat of fusion and the heat of vaporization. Heat of fusion is the heat required to melt a substance at its melting temperature, while the heat of vaporization is the heat required to evaporate the substance at its boiling point.Chemical work is primarily related to that of expansion. In physics, work is defined as:w = d × fWhere:w = work, in joules (N×m) (or calories, but we are using primarily SI units)d = distance in metersf = opposing force in Newtons (kg*m/s2)In chemical reactions, work is generally defined as :w = distance × (area × pressure)The value of distance times area is actually the volume. If we imagine a reaction taking place in a container of some volume, we measure work by pressure times the change in volume.w = ΔV × PWhere:ΔV is the change in volume, in litersIf ΔV=0, then no work is done.Example Problem: Calculate the work that must be done at standard temperature and pressure (STP is 0°C and 1 atm) to make room for the products of the octane combustion:2 C8H18 + 25 O2 --> 16 CO2 + 18 H2OAnswer: Knowing that 25 moles of gas are replaced by 34 moles of gas in this reaction, we can calculate a net increase of 9 moles of gas. Knowing the molar volume of an ideal gas at STP (22.4 L/mol), the change in volume and the work of expansion can be calculated dV = 9 moles ∗ 22.4 L/mol = 202 L The external pressure is 1.0 atm (standard pressure), so the work required is: w = dV ∗ P = 202 L ∗ 1.00 atm = 202 l-atm Using the conversion factor of 1 L-atm = 101 J, the amount of work in joules is: w = 202 L-atm ∗ 101 j/L-atm = 2000 J, or 2kJ of energyEnergyYou might remember the first law of thermodynamics: energy cannot be created or destroyed. Energy can only change form. Chemically, that usually means energy is converted to work, energy in the form of heat moves from one place to another, or energy is stored up in the constituent chemicals. You have seen how to calculate work. Heat is defined as that energy that is transferred as a result of a temperature difference between a system and its surroundings. Mathematically, we can look at the change in energy of a system as being a function of both heat and work:ΔE = q + wWhere:ΔE is the change in internal energy of a systemq is the heat flowing into the systemw is the work being done by the systemIf q is positive, we say that the reaction is endothermic, that is, heat flows into the reaction from the outside surroundings. If q is negative, then the reaction is exothermic, that is, heat is given off to the external surroundings.You might also remember the terms kinetic energy and potential energy. Kinetic energy is the energy of motion -- the amount of energy in an object that is moving. Potential energy is stationary, stored energy. If you think of a ball sitting on the edge of a table, it has potential energy in the energy possible if it falls off the table. Potential energy can be transformed into kinetic energy if and when the ball actually rolls off the table and is in motion. The total energy of the system is defined as the sum of kinetic and potential energies.In descriptions of the energy of a system, you will also see the phrase "state properties". A state property is a quantity whose value is independent of the past history of the substance. Typical state properties are altitude, pressure, volume, temperature, and internal energy.EnthalpyEnthalpy is an interesting concept: it is defined by its change rather than a single entity. A state property, the word enthalpy comes from the Greek "heat inside". If you have a chemical system that undergoes some kind of change but has a fixed volume, the heat output is equal to the change in internal energy (q = ΔE). We will define the enthalpy change, ΔH, of a system as being equal to its heat output at constant pressure:dH = q at constant pressureWhere:ΔH = change in enthalpyWe define enthalpy itself as:H = E + PVWhere:H = enthalpyE = energy of the systemPV = pressure in atm times volume in litersYou will not need to be able to calculate the enthalpy directly; in chemistry, we are only interested in the change in enthalpy, or ΔH.ΔH = Hfinal - Hinitial or ΔH = H(products) - H(reactants)Tables of enthalpies are generally given as ΔH values.Example Problem: Calculate the ΔH value of the reaction:HCl + NH3 → NH4Cl(ΔH values for HCl is -92.30; NH3 is -80.29; NH4Cl is -314.4)Answer: ΔH = ΔHproducts - ΔHreactants ΔHproducts = -314.4 ΔHreactants = -92.30 + (-80.29) = -172.59 ΔH = -314.4 - 172.59 = 141.8We can also represent enthalpy change with the equation:ΔH = ΔE + P ΔVWhere:ΔV is the change in volume, in litersP is the constant pressureIf you recall, work is defined as P ΔV, so enthalpy changes are simply a reflection of the amount of energy change (energy going in or out, endothermic or exothermic), and the amount of work being done by the reaction. For example, if ΔE = -100 kJ in a certain combustion reaction, but 10 kJ of work needs to be done to make room for the products, the change in enthalpy is:ΔH = -100 kJ + 10 kJ = -90 kJThis is an exothermic reaction (which is expected with combustion), and 90 kJ of energy is released to the environment. Basically, you get warmer. Notice the convention used here -- a negative value represents energy coming out of the system.You can also determine ΔH for a reaction based on bond dissociation energies. Breaking bonds requires energy while forming bonds releases energy. In a given equation, you must determine what kinds of bonds are broken and what kind of bonds are formed. Use this information to calculate the amount of energy used to break bonds and the amount used to form bonds. If you subtract the amount to break bonds from the amount to form bonds, you will have the ΔH for the reaction.Example Problem: Calculate ΔH for the reaction:N2 + 3H2 → 2NH3(The bond dissociation energy for N-N is 163 kJ/mol; H-H is 436 kJ/mol; N-H is 391 kJ/mol)Answer: ΔH = ΔHproducts - ΔHreactants To use the bond dissociation energies, we must determine how many bonds are in the products and the reactants. In NH3 there are 3 N-H bonds so in 2 NH3 there are 6 N-H bonds. In N2 there is 1 N-N bond and in 3H2 there are 3 H-H bonds. ΔHproducts = 6(391) = 2346 ΔHreactants = 163 + 3(436) = 1471 ΔH = 2346 - 1471 = 875EntropyEntropy is a measure of the disorder of a system. Take your room as an example. Left to itself, your room will increase in entropy (i.e., get messier) if no work (cleaning up) is done to contain the disorder. Work must be done to keep the entropy of the system low. Entropy comes from the second law of thermodynamics, which states that all systems tend to reach a state of equilibrium. The significance of entropy is that when a spontaneous change occurs in a system, it will always be found that if the total entropy change for everything involved is calculated, a positive value will be obtained. Simply, all spontaneous changes in an isolated chemical system occur with an increase in entropy. Entropy, like temperature, pressure, and enthalpy, is also a state property and is represented in the literature by the symbol "S". Like enthalpy, you can calculate the change of S (ΔS).Δ S = Sfinal - S initial or Δ S = S (products) - S (reactants)Where:ΔS is change in entropySfinal and Sinitial are the final and initial entropies, respectively
The following tab
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Kimia Termodinamika
Disiplin ilmiah yang memotong bidang kimia dan fisika umumnya dikenal sebagai kimia fisik, dan itu adalah di daerah yang studi menyeluruh termodinamika berlangsung. Kekhawatiran fisika itu sendiri berat dengan mekanisme peristiwa di alam. Tentu perubahan energi - tetapi diukur, apakah itu panas, cahaya, pekerjaan, dll - adalah peristiwa jelas fisik yang juga memiliki sifat kimia untuk mereka. Termodinamika adalah ilmu yang mempelajari perubahan energi yang menyertai perubahan fisik dan kimia. Istilah itu sendiri jelas menunjukkan apa yang terjadi - "thermo", dari suhu, yang berarti energi, dan "dinamika", yang berarti perubahan dari waktu ke waktu. Termodinamika secara kasar dapat dirumuskan dengan topik ini: Panas dan Kerja Energi Entalpi Entropi Gibbs Gratis Energi Panas dan Kerja Panas dan kerja keduanya bentuk energi. Mereka juga bentuk terkait, dalam satu yang bisa diubah menjadi yang lain. Energi panas (seperti mesin uap) dapat digunakan untuk melakukan pekerjaan (seperti mendorong kereta bawah trek). Kerja dapat diubah menjadi panas, seperti yang mungkin dialami oleh menggosok tangan Anda bersama-sama untuk menghangatkan mereka. Bekerja dan panas keduanya dapat dijelaskan dengan menggunakan satuan yang sama ukuran. Kadang-kadang kalori adalah satuan ukuran, dan mengacu pada jumlah panas yang dibutuhkan untuk menaikkan satu (1) gram air satu (1) derajat Celcius. Energi panas diukur dalam kilokalori, atau 1000 kalori. Biasanya, kita menggunakan satuan SI dari Joule (J) dan kilojoule (kJ). Satu kalori panas setara dengan 4,187 J. Anda juga akan menghadapi panas spesifik istilah, panas yang dibutuhkan untuk menaikkan satu (1) gram dari satu bahan (1) derajat Celcius. Panas spesifik, yang diberikan oleh simbol "C", umumnya didefinisikan sebagai: C = q MΔT Dimana: C = panas spesifik dalam kal / g- ° C q = panas yang ditambahkan kalori, m = massa dalam gram AT = kenaikan suhu dari bahan dalam ° C. Nilai C untuk air adalah 1,00 kal / g- ° C. Nilai untuk panas spesifik yang dilaporkan dalam literatur yang biasanya tercantum pada tekanan tertentu dan / atau volume, dan Anda perlu membayar memperhatikan pengaturan ini ketika menggunakan nilai dari buku teks di masalah atau model komputer. Contoh Soal: Jika zat 2,34 g pada 22 ° C dengan panas spesifik dari 3,88 kal / g- ° C dipanaskan dengan 124 kal energi, apa suhu baru dari substansi? Jawaban:   AT = q MC   AT = (124) (2,34) (3,88) = 13,7 ° C   baru T = 22 + 13,7 = 35,7 ° C Dua variabel panas umum lainnya adalah panas peleburan dan panas penguapan. Panas fusi adalah panas yang dibutuhkan untuk melelehkan zat pada suhu leleh, sementara panas penguapan adalah panas yang dibutuhkan untuk menguapkan zat pada titik didihnya. Pekerjaan Kimia terutama berkaitan dengan yang ekspansi. Dalam fisika, kerja didefinisikan sebagai: w = d × f Dimana: w = kerja, dalam joule (N × m) (atau kalori, tapi kita menggunakan terutama unit SI) d = jarak dalam meter f = kekuatan lawan di Newton ( kg * m / s2) Dalam reaksi kimia, pekerjaan secara umum didefinisikan sebagai: w = jarak × (area × tekanan) Nilai jarak kali luas sebenarnya volume. Jika kita membayangkan reaksi yang terjadi dalam wadah dari beberapa volume, kita mengukur bekerja dengan tekanan kali perubahan volume. W = ΔV × P Dimana: ΔV adalah perubahan volume, dalam liter Jika ΔV = 0, maka tidak ada pekerjaan . dilakukan Contoh Soal: Hitung pekerjaan yang harus dilakukan pada suhu dan tekanan standar (STP adalah 0 ° C dan 1 atm) untuk memberikan ruang bagi produk-produk dari pembakaran oktan: 2 C8H18 + 25 O2 -> 16 CO2 + 18 H2O Jawaban:   Mengetahui bahwa 25 mol gas diganti dengan 34 mol gas dalam reaksi ini, kita dapat   menghitung kenaikan bersih dari 9 mol gas. Mengetahui volume molar gas ideal pada   STP (22,4 L / mol), perubahan volume dan pekerjaan ekspansi dapat dihitung   dV = 9 mol * 22,4 L / mol = 202 ​​L   Tekanan eksternal 1,0 atm (tekanan standar ), sehingga pekerjaan yang diperlukan adalah:   w = dV * P = 202 ​​L * 1.00 atm = 202 ​​l-atm   Menggunakan faktor konversi dari 1 L-atm = 101 J, jumlah pekerjaan di joule adalah:   w = 202 ​​L atm * 101 j / L-atm = 2000 J, atau 2kJ energi Energi Anda mungkin ingat hukum pertama termodinamika: energi tidak dapat diciptakan atau dihancurkan. Energi hanya dapat berubah bentuk. Kimia, yang biasanya berarti energi dikonversi untuk bekerja, energi dalam bentuk panas bergerak dari satu tempat ke tempat lain, atau energi disimpan dalam bahan kimia konstituen. Anda telah melihat bagaimana menghitung bekerja. Panas didefinisikan sebagai energi yang ditransfer sebagai hasil dari perbedaan suhu antara sistem dan sekitarnya. Secara matematis, kita dapat melihat perubahan energi dari sistem sebagai fungsi dari kedua panas dan kerja: ΔE = q + w Dimana: ΔE adalah perubahan energi internal sistem q panas mengalir ke dalam sistem w adalah pekerjaan yang dilakukan oleh sistem Jika q positif, kita mengatakan bahwa reaksi endotermik, yaitu, panas mengalir ke reaksi dari lingkungan luar. Jika q adalah negatif, maka reaksi adalah eksotermik, yaitu, panas dilepaskan ke lingkungan eksternal. Anda juga mungkin ingat istilah energi kinetik dan energi potensial. Energi kinetik adalah energi gerak - jumlah energi dalam suatu objek yang bergerak. Energi potensial adalah stasioner, energi yang tersimpan. Jika Anda berpikir dari sebuah bola duduk di tepi meja, ia memiliki energi potensial di energi mungkin jika jatuh dari meja. Energi potensial dapat diubah menjadi energi kinetik jika dan ketika bola justru menggelinding dari meja dan bergerak. Energi total dari sistem didefinisikan sebagai jumlah energi kinetik dan potensial. Dalam deskripsi dari energi sistem, Anda juga akan melihat kalimat "sifat negara". Sebuah milik negara adalah kuantitas yang nilainya tidak tergantung pada sejarah masa lalu dari substansi. Sifat khas negara ketinggian, tekanan, volume, suhu, dan energi internal. Entalpi Entalpi adalah sebuah konsep menarik: itu didefinisikan oleh perubahan dan bukan sebuah entitas tunggal. A milik negara, entalpi kata berasal dari bahasa Yunani "panas dalam". Jika Anda memiliki sistem kimia yang mengalami beberapa jenis perubahan tetapi memiliki volume tetap, output panas adalah sama dengan perubahan energi internal (q = ΔE). Kami akan menentukan perubahan entalpi, ΔH, suatu sistem sebagai sama dengan output panas yang pada tekanan konstan: dH = q pada tekanan konstan Dimana: ΔH = perubahan entalpi Kami mendefinisikan entalpi dirinya sebagai: H = E + PV Dimana: H = entalpi E = energi dari sistem PV = tekanan di atm kali volume liter Anda tidak akan perlu untuk dapat menghitung entalpi langsung; dalam kimia, kita hanya tertarik pada perubahan entalpi, atau ΔH. ΔH = Hfinal - Hinitial atau ΔH = H (produk) - H (reaktan) Tabel entalpi umumnya diberikan sebagai nilai ΔH. Contoh Soal: Hitung nilai ΔH reaksi: HCl + NH3 → NH4Cl (nilai ΔH untuk HCl adalah -92,30; NH3 adalah -80,29; NH4Cl adalah -314,4) Jawaban:   ΔH = ΔHproducts - ΔHreactants   ΔHproducts = -314,4   ΔHreactants = -92,30 + (-80,29) = - 172,59   ΔH = -314,4 - 172,59 = 141,8 Kami juga dapat mewakili perubahan entalpi dengan persamaan: ΔH = ΔE + P ΔV Dimana: ΔV adalah perubahan volume, dalam liter P adalah tekanan konstan Jika Anda ingat, pekerjaan didefinisikan sebagai P ΔV, perubahan sehingga entalpi hanyalah sebuah refleksi dari jumlah perubahan energi (energi masuk atau keluar, endotermik atau eksotermik), dan jumlah pekerjaan yang dilakukan oleh reaksi. Sebagai contoh, jika ΔE = -100 kJ dalam reaksi pembakaran tertentu, namun 10 kJ pekerjaan yang perlu dilakukan untuk memberikan ruang bagi produk, perubahan entalpi adalah: ΔH = -100 kJ + 10 kJ = -90 kJ ini merupakan reaksi eksotermik (yang diharapkan dengan pembakaran), dan 90 kJ energi dilepaskan ke lingkungan. Pada dasarnya, Anda mendapatkan lebih hangat. Perhatikan konvensi yang digunakan di sini - nilai negatif mewakili energi yang keluar dari sistem. Anda juga dapat menentukan ΔH untuk reaksi berdasarkan energi disosiasi ikatan. Memecah ikatan membutuhkan energi saat membentuk ikatan melepaskan energi. Dalam persamaan yang diberikan, Anda harus menentukan apa jenis obligasi yang rusak dan apa jenis ikatan terbentuk. Gunakan informasi ini untuk menghitung jumlah energi yang digunakan untuk memecahkan obligasi dan jumlah yang digunakan untuk membentuk ikatan. Jika Anda mengurangi jumlah untuk memutuskan ikatan dari jumlah yang membentuk ikatan, Anda akan memiliki ΔH untuk reaksi. Contoh Soal: Hitung ΔH untuk reaksi: N2 + 3H2 → 2NH3 (Ikatan energi disosiasi untuk NN adalah 163 kJ / mol ; HH adalah 436 kJ / mol; NH adalah 391 kJ / mol) Jawaban:   ΔH = ΔHproducts - ΔHreactants   Untuk menggunakan energi disosiasi ikatan, kita harus menentukan berapa banyak obligasi   dalam produk dan reaktan. Dalam NH3 ada 3 NH obligasi sehingga dalam 2 NH3   ada 6 NH obligasi. Dalam N2 ada 1 NN obligasi dan dalam 3H2 ada 3 HH obligasi.   ΔHproducts = 6 (391) = 2346   ΔHreactants = 163 + 3 (436) = 1471   ΔH = 2346-1471 = 875 Entropi Entropi adalah ukuran dari gangguan sebuah sistem. Ambil kamar Anda sebagai contoh. Kiri untuk dirinya sendiri, kamar Anda akan meningkat entropi (yaitu, mendapatkan rancu) jika tidak ada kerja (membersihkan) dilakukan mengandung gangguan tersebut. Pekerjaan yang harus dilakukan untuk menjaga entropi dari sistem yang rendah. Entropi berasal dari hukum kedua termodinamika, yang menyatakan bahwa semua sistem cenderung mencapai keadaan keseimbangan. Pentingnya entropi adalah bahwa ketika perubahan spontan terjadi dalam sistem, ia akan selalu menemukan bahwa jika perubahan total entropi untuk segala sesuatu yang terlibat dihitung, nilai positif akan diperoleh. Cukup, semua perubahan spontan dalam sistem kimia terisolasi terjadi dengan peningkatan entropi. Entropi, seperti suhu, tekanan, dan entalpi, juga merupakan milik negara dan diwakili dalam literatur dengan simbol "S". Seperti entalpi, Anda dapat menghitung perubahan S (ΔS). Δ S = Sfinal - S awal atau Δ S = S (produk) - S (reaktan) Dimana: ΔS adalah perubahan entropi Sfinal dan Sinitial adalah entropi akhir dan awal masing-masing tab berikut











































































































































































Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: