Cigarette smoke induces endoplasmic reticulum stress and the unfolded  terjemahan - Cigarette smoke induces endoplasmic reticulum stress and the unfolded  Bahasa Indonesia Bagaimana mengatakan

Cigarette smoke induces endoplasmic

Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells
Ellen Jorgensen, Andy Stinson, Lin Shan, Jin Yang, Diana Gietl and Anthony P. Albino
BMC Cancer. 8 (Aug. 11, 2008): p229. From InfoTrac Health and Medical Collection 2017.
DOI: http://dx.doi.org/10.1186/1471-2407-8-229
Copyright: COPYRIGHT 2008 BioMed Central Ltd.
http://www.biomedcentral.com/bmccancer/
Listen
Full Text:
Authors: Ellen Jorgensen [1]; Andy Stinson [1]; Lin Shan [1]; Jin Yang [1]; Diana Gietl [1]; Anthony P Albino (corresponding author) [1]

Background

The long lag time between initiation of cigarette smoking and cancer induction (estimated at 25 to 50 pack-years) [1, 2] raises several fundamental questions concerning the eventual induction of tobacco-induced diseases for which there is little information: e.g., how does the lung adapt to the chronic assault of many decades of cigarette smoke (CS) exposure, what are the biological sequelae that occur in response to this adaptation and the continuous disruption of normal cellular homeostasis in the lung, and is this adaption a help or hindrance to lung cancer development? Our working hypothesis is that a) tobacco-induced lung cancer is a complex process in which numerous pro-survival cellular systems have important contributory functions that both augment and modify the central role played by tobacco carcinogens and reactive oxygen/nitrogen species, and b) CS temporally shapes the course of lung carcinogenesis through chronic activation, and eventual dysregulation, of normal cellular defense mechanisms. In our published [3, 4, 5, 6] and unpublished studies using high-density oligonucleotide arrays and other techniques to define relevant CS-induced alterations in gene/protein expression and function in lung cells, we have attempted to place the impacted genes into biological context by developing a plausible mechanistic model relating disruption of specific cellular circuits to pulmonary disease. Thus, in addition to revealing that CS affects the functioning of several important molecular pathways (e.g., redox homeostasis, detoxification of xenobiotics and cell cycle control), these data highlighted a potential role for the unfolded protein response (UPR) program.

Successful maturation of secretory and membrane proteins in the endoplasmic reticulum (ER) involves proper folding, assembly, and post-translational modification [7]. A wide range of stressful situations (e.g., hypoxia, viral infection, alterations in glycosylation status, disruption of calcium homeostasis, and oxidative stress), can disrupt this maturation process, resulting in the accumulation of unfolded or misfolded proteins and causing ER stress [8]. The ER attempts to attenuate this stress by activating an adaptive set of stress response signaling pathways termed the Unfolded Protein Response (UPR) [8, 9]. The primary function of the UPR is to reduce the accumulation of aberrantly folded proteins in the ER and promote cell survival through a transient decrease in protein translation coupled with increases in the ER's capacity to refold and degrade these proteins[10, 11]. If this pro-survival response fails to restore homeostatic equilibrium in the ER, a secondary response, triggered in part by the same ER stress sensors that activate the UPR program, promotes apoptosis and cell death. The importance of a properly functioning ER in maintaining cellular and tissue health is clear from the mounting evidence that a chronic increase in defective protein structures coupled with dysregulation within the ER can play a pathogenic role in diabetes, cardiovascular disease, Alzheimer's and Parkinson's syndromes, and cancer [12, 13, 14].

An accumulation of misfolded proteins induces the dissociation of the ER-resident master chaperone regulator, BiP/GRP78 (Binding Immunoglobulin Protein/Glucose Response Protein 78), from three ER transmembrane sensor proteins: ATF6 (Activation of Transcription Factor 6), Ire1 (Inositol Requiring Enzyme 1[alpha]), and PERK (Protein Kinase R-like ER Kinase) resulting in activation of their respective molecular functions [15, 16]. A second mechanism driving activation of these sensor proteins may also involve binding of unfolded protein domains to a peptide-binding groove in both IRE1 and PERK, and possibly ATF6 [17]. Upon experiencing stress the 90 kDa ATF6 protein translocates from the ER to the Golgi where it is proteolytically processed to a functional 50 kDa transcription factor that binds to specific ER stress elements and directs the synthesis of chaperone proteins that mitigate protein misfolding through various mechanisms [18, 19]. IRE1 has, in addition to a kinase domain, an endoribonuclease domain that splices an intron from the XBP1 (X-box Binding Protein) mRNA resulting in the synthesis of a transcriptional activator that modulates expression of a number of genes involved in ER homeostasis, DNA damage repair, and redox
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cellsEllen Jorgensen, Andy Stinson, Lin Shan, Jin Yang, Diana Gietl and Anthony P. AlbinoBMC Cancer. 8 (Aug. 11, 2008): p229. From InfoTrac Health and Medical Collection 2017.DOI: http://dx.doi.org/10.1186/1471-2407-8-229Copyright: COPYRIGHT 2008 BioMed Central Ltd.http://www.biomedcentral.com/bmccancer/ListenFull Text: Authors: Ellen Jorgensen [1]; Andy Stinson [1]; Lin Shan [1]; Jin Yang [1]; Diana Gietl [1]; Anthony P Albino (corresponding author) [1]BackgroundThe long lag time between initiation of cigarette smoking and cancer induction (estimated at 25 to 50 pack-years) [1, 2] raises several fundamental questions concerning the eventual induction of tobacco-induced diseases for which there is little information: e.g., how does the lung adapt to the chronic assault of many decades of cigarette smoke (CS) exposure, what are the biological sequelae that occur in response to this adaptation and the continuous disruption of normal cellular homeostasis in the lung, and is this adaption a help or hindrance to lung cancer development? Our working hypothesis is that a) tobacco-induced lung cancer is a complex process in which numerous pro-survival cellular systems have important contributory functions that both augment and modify the central role played by tobacco carcinogens and reactive oxygen/nitrogen species, and b) CS temporally shapes the course of lung carcinogenesis through chronic activation, and eventual dysregulation, of normal cellular defense mechanisms. In our published [3, 4, 5, 6] and unpublished studies using high-density oligonucleotide arrays and other techniques to define relevant CS-induced alterations in gene/protein expression and function in lung cells, we have attempted to place the impacted genes into biological context by developing a plausible mechanistic model relating disruption of specific cellular circuits to pulmonary disease. Thus, in addition to revealing that CS affects the functioning of several important molecular pathways (e.g., redox homeostasis, detoxification of xenobiotics and cell cycle control), these data highlighted a potential role for the unfolded protein response (UPR) program.Successful maturation of secretory and membrane proteins in the endoplasmic reticulum (ER) involves proper folding, assembly, and post-translational modification [7]. A wide range of stressful situations (e.g., hypoxia, viral infection, alterations in glycosylation status, disruption of calcium homeostasis, and oxidative stress), can disrupt this maturation process, resulting in the accumulation of unfolded or misfolded proteins and causing ER stress [8]. The ER attempts to attenuate this stress by activating an adaptive set of stress response signaling pathways termed the Unfolded Protein Response (UPR) [8, 9]. The primary function of the UPR is to reduce the accumulation of aberrantly folded proteins in the ER and promote cell survival through a transient decrease in protein translation coupled with increases in the ER's capacity to refold and degrade these proteins[10, 11]. If this pro-survival response fails to restore homeostatic equilibrium in the ER, a secondary response, triggered in part by the same ER stress sensors that activate the UPR program, promotes apoptosis and cell death. The importance of a properly functioning ER in maintaining cellular and tissue health is clear from the mounting evidence that a chronic increase in defective protein structures coupled with dysregulation within the ER can play a pathogenic role in diabetes, cardiovascular disease, Alzheimer's and Parkinson's syndromes, and cancer [12, 13, 14].
An accumulation of misfolded proteins induces the dissociation of the ER-resident master chaperone regulator, BiP/GRP78 (Binding Immunoglobulin Protein/Glucose Response Protein 78), from three ER transmembrane sensor proteins: ATF6 (Activation of Transcription Factor 6), Ire1 (Inositol Requiring Enzyme 1[alpha]), and PERK (Protein Kinase R-like ER Kinase) resulting in activation of their respective molecular functions [15, 16]. A second mechanism driving activation of these sensor proteins may also involve binding of unfolded protein domains to a peptide-binding groove in both IRE1 and PERK, and possibly ATF6 [17]. Upon experiencing stress the 90 kDa ATF6 protein translocates from the ER to the Golgi where it is proteolytically processed to a functional 50 kDa transcription factor that binds to specific ER stress elements and directs the synthesis of chaperone proteins that mitigate protein misfolding through various mechanisms [18, 19]. IRE1 has, in addition to a kinase domain, an endoribonuclease domain that splices an intron from the XBP1 (X-box Binding Protein) mRNA resulting in the synthesis of a transcriptional activator that modulates expression of a number of genes involved in ER homeostasis, DNA damage repair, and redox
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Asap rokok menyebabkan retikulum endoplasma stres dan respon protein dilipat di normal dan ganas sel paru-paru manusia
Ellen Jorgensen, Andy Stinson, Lin Shan, Jin Yang, Diana Gietl dan Anthony P. Albino
Kanker BMC. 8 (11 Agustus 2008): p229. Dari InfoTrac Kesehatan dan Koleksi Medis 2017.
DOI: http://dx.doi.org/10.1186/1471-2407-8-229
Copyright: HAK CIPTA 2008 BioMed Central Ltd
http://www.biomedcentral.com/bmccancer/
Dengar
Full Text:
Penulis: Ellen Jorgensen [1]; Andy Stinson [1]; Lin Shan [1]; Jin Yang [1]; Diana Gietl [1]; Anthony P Albino (penulis yang sesuai) [1]

Latar Belakang

Jeda waktu yang lama antara inisiasi merokok dan induksi kanker (diperkirakan 25 sampai 50 pack-tahun) [1, 2] menimbulkan beberapa pertanyaan mendasar mengenai induksi akhirnya tembakau yang diinduksi penyakit yang ada sedikit informasi: misalnya, bagaimana paru-paru beradaptasi dengan serangan kronis puluhan tahun dari asap rokok (CS) paparan, apa gejala sisa biologis yang terjadi dalam menanggapi adaptasi ini dan gangguan terus menerus dari homeostasis seluler normal di paru-paru, dan adaptasi ini bantuan atau halangan untuk perkembangan kanker paru-paru? Hipotesis kerja kami adalah bahwa a) kanker paru-paru tembakau yang diinduksi adalah proses yang kompleks di mana banyak pro-survival sistem selular memiliki fungsi iuran penting bahwa baik menambah dan memodifikasi peran sentral yang dimainkan oleh karsinogen tembakau dan spesies oksigen / nitrogen reaktif, dan b) CS temporal membentuk jalannya karsinogenesis paru-paru melalui aktivasi kronis, dan disregulasi akhirnya, mekanisme pertahanan sel normal. Dalam kami diterbitkan [3, 4, 5, 6] dan studi dipublikasikan menggunakan high-density array oligonukleotida dan teknik lain untuk menentukan relevan perubahan CS-diinduksi di gen / ekspresi protein dan fungsi dalam sel paru-paru, kami telah berusaha untuk menempatkan gen yang terkena dampak dalam konteks biologis dengan mengembangkan model mekanistik berkaitan gangguan yang masuk akal dari sirkuit seluler khusus untuk penyakit paru. Dengan demikian, selain mengungkapkan bahwa CS mempengaruhi fungsi beberapa jalur molekuler penting (misalnya, redoks homeostasis, detoksifikasi xenobiotik dan kontrol siklus sel), data ini menyoroti peran potensial untuk respon protein dilipat (UPR) Program.

Pematangan Sukses sekretori dan membran protein di retikulum endoplasma (ER) melibatkan lipat yang tepat, perakitan, dan modifikasi pasca-translasi [7]. Berbagai situasi stres (misalnya, hipoksia, infeksi virus, perubahan status glikosilasi, gangguan homeostasis kalsium, dan stres oksidatif), dapat mengganggu proses pematangan ini, mengakibatkan akumulasi protein dilipat atau gagal melipat dan menyebabkan ER stres [8 ]. ER mencoba untuk melemahkan stres ini dengan mengaktifkan set adaptif dari respon stres jalur sinyal disebut Protein Response dilipat (UPR) [8, 9]. Fungsi utama dari UPR adalah untuk mengurangi akumulasi protein aberrantly dilipat di ER dan mempromosikan kelangsungan hidup sel melalui penurunan sementara dalam terjemahan protein ditambah dengan peningkatan kapasitas ER untuk melipat kembali dan mendegradasi protein ini [10, 11]. Jika respon pro-survival ini gagal untuk mengembalikan keseimbangan homeostatis di UGD, respon sekunder, sebagian dipicu oleh sensor tekanan ER yang sama yang mengaktifkan program UPR, mempromosikan apoptosis dan kematian sel. Pentingnya ER yang berfungsi dalam menjaga kesehatan sel dan jaringan jelas dari bukti bahwa peningkatan kronis pada struktur protein yang rusak ditambah dengan disregulasi dalam ER dapat memainkan peran patogenik pada diabetes, penyakit jantung, Alzheimer dan Parkinson sindrom, dan . kanker [12, 13, 14]

Sebuah akumulasi protein yang gagal melipat menginduksi disosiasi master pendamping regulator ER-penduduk, BiP / GRP78 (Binding Immunoglobulin protein / Glukosa Response protein 78), dari tiga ER protein sensor transmembran: ATF6 (Aktivasi dari Transkripsi Factor 6), Ire1 (Inositol Membutuhkan Enzyme 1 [alpha]), dan merembes (Protein Kinase R-seperti ER Kinase) mengakibatkan aktivasi fungsi molekul masing-masing [15, 16]. Mekanisme kedua mengemudi aktivasi protein sensor ini juga melibatkan mengikat domain protein dilipat ke alur peptida-mengikat kedua IRE1 dan merembes, dan mungkin ATF6 [17]. Setelah mengalami stres protein 90 kDa ATF6 translocates dari ER ke Golgi di mana ia proteolitik diproses ke 50 kDa faktor transkripsi fungsional yang mengikat elemen stres ER spesifik dan mengarahkan sintesis protein pendamping yang mengurangi protein misfolding melalui berbagai mekanisme [18 , 19]. IRE1 memiliki, selain ke domain kinase, domain endoribonuclease yang splices intron dari XBP1 (X-box Binding Protein) mRNA mengakibatkan sintesis dari aktivator transkripsi yang memodulasi ekspresi dari sejumlah gen yang terlibat dalam ER homeostasis, DNA memperbaiki kerusakan, dan redoks
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: